Experiments and Modeling the Viscoelastic Behavior of Polymeric Gels

2021 ◽  
Author(s):  
Nikola Bosnjak ◽  
Shawn Chester
2020 ◽  
Vol 137 ◽  
pp. 103829 ◽  
Author(s):  
Nikola Bosnjak ◽  
Siva Nadimpalli ◽  
Dai Okumura ◽  
Shawn A. Chester

Author(s):  
G. M. Brown ◽  
D. F. Brown ◽  
J. H. Butler

The term “gel”, in the jargon of the plastics film industry, may refer to any inclusion that produces a visible artifact in a polymeric film. Although they can occur in any plastic product, gels are a principle concern in films where they detract from the cosmetic appearance of the product and may compromise its mechanical strength by acting as local stress concentrators. Many film gels are small spheres or ellipsoids less than one millimeter in diameter whereas other gels are fusiform-shaped and may reach several centimeters in length. The actual composition of gel inclusions may vary from miscellaneous inorganics (i.e. glass and mineral particles) and processing additives to heavily oxidized, charred or crosslinked polymer. The most commonly observed gels contain polymer differing from the bulk of the sample in its melt viscosity, density or molecular weight.Polymeric gels are a special concern in polyethylene films. Over the years and with the examination of a variety of these samples three predominant polymeric species have been observed: density gels which have different crystallinity than the film; melt-index gels in which the molecular weight is different than the film and crosslinked gels which are comprised of crosslinked polyethylene.


1988 ◽  
Vol 16 (3) ◽  
pp. 146-170 ◽  
Author(s):  
S. Roy ◽  
J. N. Reddy

Abstract A good understanding of the process of adhesion from the mechanics viewpoint and the predictive capability for structural failures associated with adhesively bonded joints require a realistic modeling (both constitutive and kinematic) of the constituent materials. The present investigation deals with the development of an Updated Lagrangian formulation and the associated finite element analysis of adhesively bonded joints. The formulation accounts for the geometric nonlinearity of the adherends and the nonlinear viscoelastic behavior of the adhesive. Sample numerical problems are presented to show the stress and strain distributions in bonded joints.


2020 ◽  
Vol 16 (4) ◽  
pp. 462-469
Author(s):  
Zhaleh Sheidaei ◽  
Bahareh Sarmadi ◽  
Seyede M. Hosseini ◽  
Fardin Javanmardi ◽  
Kianoush Khosravi-Darani ◽  
...  

<P>Background: The high amounts of fat, sugar and calorie existing in dairy desserts can lead to increase the risk of health problems. Therefore, the development of functional and dietary forms of these products can help the consumer health. </P><P> Objective: This study aims to investigate the effects of &#954;-carrageenan, modified starch and inulin addition on rheological and sensory properties of non-fat and non-added sugar dairy dessert. </P><P> Methods: In order to determine the viscoelastic behavior of samples, oscillatory test was carried out and the values of storage modulus (G′), loss modulus (G″), loss angle tangent (tan &#948;) and complex viscosity (&#951;*) were measured. TPA test was used for analysis of the desserts’ texture and textural parameters of samples containing different concentrations of carrageenan, starch and inulin were calculated. </P><P> Results: All treatments showed a viscoelastic gel structure with the storage modulus higher than the loss modulus values. Increasing amounts of &#954;-carrageenan and modified starch caused an increase in G′ and G″ as well as &#951;* and a decrease in tan &#948;. Also, firmness and cohesiveness were enhanced. The trained panelists gave the highest score to the treatment with 0.1% &#954;-carrageenan, 2.5% starch and 5.5% inulin (sucralose as constant = 0.25%) and this sample was the best treatment with desirable attributes for the production of non-fat and non-added sugar dairy dessert. </P><P> Conclusion: It can be concluded that the concentration of &#954;-carrageenan and starch strongly influenced the rheological and textural properties of dairy desserts, whereas the inulin content had little effect on these attributes.</P>


Sign in / Sign up

Export Citation Format

Share Document