Influence of κ-Carrageenan, Modified Starch and Inulin Addition on Rheological and Sensory Properties of Non-fat and Non-added Sugar Dairy Dessert

2020 ◽  
Vol 16 (4) ◽  
pp. 462-469
Author(s):  
Zhaleh Sheidaei ◽  
Bahareh Sarmadi ◽  
Seyede M. Hosseini ◽  
Fardin Javanmardi ◽  
Kianoush Khosravi-Darani ◽  
...  

<P>Background: The high amounts of fat, sugar and calorie existing in dairy desserts can lead to increase the risk of health problems. Therefore, the development of functional and dietary forms of these products can help the consumer health. </P><P> Objective: This study aims to investigate the effects of &#954;-carrageenan, modified starch and inulin addition on rheological and sensory properties of non-fat and non-added sugar dairy dessert. </P><P> Methods: In order to determine the viscoelastic behavior of samples, oscillatory test was carried out and the values of storage modulus (G′), loss modulus (G″), loss angle tangent (tan &#948;) and complex viscosity (&#951;*) were measured. TPA test was used for analysis of the desserts’ texture and textural parameters of samples containing different concentrations of carrageenan, starch and inulin were calculated. </P><P> Results: All treatments showed a viscoelastic gel structure with the storage modulus higher than the loss modulus values. Increasing amounts of &#954;-carrageenan and modified starch caused an increase in G′ and G″ as well as &#951;* and a decrease in tan &#948;. Also, firmness and cohesiveness were enhanced. The trained panelists gave the highest score to the treatment with 0.1% &#954;-carrageenan, 2.5% starch and 5.5% inulin (sucralose as constant = 0.25%) and this sample was the best treatment with desirable attributes for the production of non-fat and non-added sugar dairy dessert. </P><P> Conclusion: It can be concluded that the concentration of &#954;-carrageenan and starch strongly influenced the rheological and textural properties of dairy desserts, whereas the inulin content had little effect on these attributes.</P>

2019 ◽  
Vol 285 ◽  
pp. 380-384
Author(s):  
Gerardo Sanjuan-Sanjuan ◽  
Ángel Enrique Chavez-Castellanos

The subject of this work is to investigate viscoelastic properties such as loss modulus (G ́ ́), storage modulus (G ́), complex shear modulus (G*), complex viscosity (η*) and loss angle () at different temperatures by means of a small-amplitude oscillatory test. These properties allow to provide information about materials structure. For this purpose, we employed a tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. It is interesting to note that the Sn-15%Pb alloy exhibits a slightly decrease in storage modulus (G ́) over the entire frequency (0.01-10Hz) at high temperatures, showing its viscoelastic behavior. In addition, a detailed analysis of master curves (oscillatory tests) was made to relate the semisolid microstructure (solid fraction) with the plateau modulus (GN0) which is directly related with both molecular weight or percolation threshold in polymer and gels science respectively.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 873
Author(s):  
Huaiwen Yang ◽  
Chai-Chun Tsai ◽  
Jung-Shiun Jiang ◽  
Chi-Chung Hua

Modifying the consistency of a given edible fluid matrix by incorporating food thickeners is a common nursing remedy for individuals with dysphagia when adequate water consumption is a concern. As apple pectin (AP) offers nutraceutical benefits, properly formulated apple pectin (AP)-based thickeners featuring xanthan gum (XG) can be superior candidates for preparation of dysphagia-friendly matrices (DFMs). Our recruited DFMs exhibit fluid-like behavior (loss modulus > storage modulus, G” > G’) at lower AP concentrations (2 and 5%, w/w); they turn into weak/critical gels (G’ ≈ G”) as the concentration becomes higher (9%). In contrast, XG-DFMs display gel-like attributes with G’ > G”, even at rather low concentrations (<1%) and become more resistant to sugar, Na+, and Ca2+ modifications. The composite matrix of AP1.8XG0.2 (constraint at 2%) exhibits a confined viscosity of 278 ± 11.7 mPa∙s, which is considered a DFM, in comparison to only AP- or XG-thickened ones. The hardness measurements of XG0.6 and AP1.2XG0.8 are 288.33 ± 7.506 and 302.00 ± 9.849 N/m2, respectively, which potentially represent a promising formulation base for future applications with DFMs; these textural values are not significantly different from a commercially available product (p > 0.05) for dysphagia nursing administrations.


2013 ◽  
Vol 815 ◽  
pp. 639-644 ◽  
Author(s):  
Pei Ying Liu ◽  
Zhi Hong Jiang

Wood-plastic composite is a kind of viscoelastic materials. This paper presents the dynamic viscoelastic behavior of WPCs at different temperature, frequency and bamboo flours levels. The storage modulus decreased with the rise of temperature, the loss modulus and tanδ increased as temperature increased but decreased after reaching the peak. Frequency had a little influence on storage modulus and loss modulus, but the glass transition temperature increased with the increase of frequency, while the tanδ decreased. The glass transition temperature of this kind WPCs is about 85°C. The addition of bamboo flours had a positive effect on the dynamic viscoelastic behavior. From the results above, the activation energy of the WPCs was measured using an Arrhenius relationship to investigate the interphase between the wood and plastic.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Prashant A Patil ◽  
Santosh D Wanjale ◽  
Jyoti P. Jog

AbstractNanocomposites of poly(4-methyl-1-pentene) (PMP) with various weight fractions of multiwall carbon nanotubes (MWNT’s) were prepared by melt compounding. The nanocomposites are characterized for structure using scanning electron microscopy. The viscoelastic behavior of the nanocomposites is investigated in solid as well as melt state. The study reveals a significant increase in storage modulus especially in the rubbery regime of the polymer matrix and reduced tan δ. Rheological properties in melt show that the complex viscosity and shear storage modulus are increased as a result of incorporation of MWNT. A systematic decrease in the cross over frequency is noted which is attributed to the increased relaxation time. In dielectric analysis, composition dependent enhanced permittivity and conductivity are observed. The thermal stability of the polymer is found to be significantly improved in presence of MWNT’s.


Holzforschung ◽  
2015 ◽  
Vol 69 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Qianqian Tang ◽  
Mingsong Zhou ◽  
Dongjie Yang ◽  
Xueqing Qiu

Abstract Concentrated sodium lignosulfonate (NaLS) solutions have wide industrial applications. Therefore, the viscoelastic properties of NaLS in concentrations of 55%–63% have been investigated between 5°C and 55°C by means of a dynamic rheological technique, namely, the oscillatory rheological experiments were conducted in a rheometer in the small amplitude oscillatory mode. All solutions showed “shear-thinning” behavior over frequency. The complex viscosity (η*) increased and the loss tangent (tanδ) decreased with increasing concentrations. Both the storage modulus (G′) and the loss modulus (G″) increased with increasing frequencies and concentrations. The change in viscoelastic behavior was probably caused by stronger aggregation effects. However, the effects of temperature on the viscoelastic properties are more complex. For 60% NaLS, G′, G″, and η* decreased, but tanδ increased with increasing temperatures. When the temperature exceeded 20°C, G′, G″, and η* increased, but tanδ decreased, and the relaxation times were increased as a function of temperature. The change in viscoelasticity as a function of temperature may also be related to intermolecular aggregation and the swelling of aggregates. The conductivity experiments indicated that the formation of a greater strength of network structures at higher levels of concentrations between 55% and 63% and temperatures between 20°C and 55°C was probably responsible for elasticity enhancement.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Davood Zaarei ◽  
Ali Asghar Sarabi ◽  
Farhad Sharif ◽  
Seyed Mahmoud Kassiriha ◽  
Mohsen Moazzami Gudarzi

AbstractWe investigated the influence of loading two different types of organoclay on the linear viscoelastic properties of an uncured epoxy nanocomposite coating. Meanwhile, the effect of sonication in the dispersion process on the characteristics of nanocomposite has been studied. To achieve fully dispersed structures of clay-epoxy, we applied high shear mixing and high-intensity ultrasound during the synthesis of clay-epoxy nanocomposites.The flow properties of the compositions with clay loadings more than 4 wt% of low CEC quaternary ammonium modified clay, as analyzed by rheomechanical spectroscopy (RMS), showed a solid-like behavior. While the neat resin system exhibited Newtonian flow, some nanodispersed coatings exhibited pseudo plastic flow behavior, typical of polymeric fluids such as gels and pastes. With varying the type of the clay the resultant coatings exhibited a storage modulus ranging from 0.01 to over 400 Pa and a loss modulus ranging from 4 to over 200 Pa. Moreover, the complex viscosity was ranging from 12 to 1100 Pas as the clay loading increased from 0 to 8wt %. The strong increase in modulus of one type of the clays was due to the mainly intercalated and dispersed silicate platelets. The increase rate in storage modulus of these compositions decreased at higher organoclay loadings and was not linear. These results can lead to the prediction of film formation properties and application conditions of these nanocomposite coatings


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 418
Author(s):  
David Ramirez-Brewer ◽  
Oscar Danilo Montoya ◽  
Jairo Useche Vivero ◽  
Luis García-Zapateiro

Hydrocolloid-based films are a good alternative in the development of biodegradable films due to their properties, such as non-toxicity, functionality, and biodegradability, among others. In this work, films based on hydrocolloids (gellan gum, carrageenan, and guar gum) were formulated, evaluating their dynamic rheological behavior and creep and recovery. Maxwell's classical and fractional rheological models were implemented to describe its viscoelastic behavior, using the Vortex Search Algorithm for the estimation of the parameters. The hydrocolloid-based films showed a viscoelastic behavior, where the behavior of the storage modulus (G') and loss modulus (G'') indicated a greater elastic behavior (G' > G''). The Maxwell fractional model with two spring-pots showed an optimal fit of the experimental data of storage modulus (G') and loss modulus (G'') and a creep compliance (J) (Fmin < 0.1 and R2 > 0.98). This shows that fractional models are an excellent alternative for describing the dynamic rheological behavior and creep recovery of films. These results show the importance of estimating parameters that allow for the dynamic rheological and creep behaviors of hydrocolloid-based films for applications in the design of active films because they allow us to understand their behavior from a rheological point of view, which can contribute to the design and improvement of products such as food coatings, food packaging, or other applications containing biopolymers.


2004 ◽  
Vol 14 (3) ◽  
pp. 140-147 ◽  
Author(s):  
A. Martínez-Ruvalcaba ◽  
E. Chornet ◽  
D. Rodrigue

AbstractA detailed analysis of the dynamic flow properties of chitosan in solution at different temperatures (25 - 45°C), chitosan concentration (0.5% - 2.0%), solvent type (acetic, lactic, and hydrochloric acid), and ionic strength (0 and 0.2M NaCl) has been undertaken. The storage modulus, G’, loss modulus, G’’ and complex viscosity, η* have been determined over a wide range of frequencies and the results are presented using master curves. For the conditions studied, at low frequencies chitosan solutions show a constant complex viscosity which decreases as frequency increases. Likewise, storage modulus, G’ and loss modulus, G’’ increase as frequency increases with G’’ being always greater than G’ (η’ > η’’) indicating that viscous effects are more important than elastic effects. For modelling the oscillatory-shear results we used the generalized Maxwell model. Two empirical equations were used to correlate the data: Cox-Merz rule for viscosity and Laun's rule for primary normal stress difference. Both relations were found to represent our data for the experimental conditions studied.


2011 ◽  
Vol 236-238 ◽  
pp. 1322-1325 ◽  
Author(s):  
Yan Jun Tang ◽  
You Ming Li ◽  
Guo Xin Xue ◽  
Yu Zhao ◽  
Xiu Mei Zhang ◽  
...  

The focus of this study is to investigate the effect of carboxylated styrene-butadiene rubber (SBR) latex on the dynamic rheologcial properties of paper coating suspensions modified with nanosized particles. The elastic storage modulus G′ and the viscid loss modulus G′′ are used to evaluate the dynamic rheologcial properties of paper coating suspensions. The effects of different amount carboxylated styrene-butadiene rubber latex on the flow parameters of paper coating suspensions are comparatively presented. It is shown that the dynamic elastic storage modulus G′ and viscid loss modules G′′ of paper coating suspensions increase with the SBR content change from 13% to 18%. The dynamic rheologcial properties are related to the strength of the network structure of paper coating suspensions. It is also found that the elastic storage modulus G′ of paper coating suspensions is larger than viscid loss modulus G′′, which indicates that paper coating suspensions in this investigation all behave like a viscoelastic solid.


2021 ◽  
Vol 12 (4) ◽  
pp. 5709-5715

The present investigation focused on the evaluation of rheological properties HDPE reinforced with equal weight percentage (i.e., 0.1 wt. %) of Nano-diamond (0D), Carbon nanotubes (1D), and Graphite Nano-platelets (2D) multidimensional nanofillers. The results like storage modulus, loss modulus, Tan delta, and complex viscosity results expounded from the rheological test with a frequency sweep from 10-1 to 102 rad/s. The highest storage modulus was perceived by 0.1 CNT-based composites, i.e., 18408 Pa, which decreased to 19, 52, and 85 % for 0.1 GNP, 0.1 ND, and pure, respectively. A similar trend was observed for loss modulus and damping factor results. The shear-thinning behavior observed in viscosity results and the addition of ND nanofillers improve the viscosity to a large amount. The potential applications of the composites include polymer gears, landing mats, cams, and various functional elements.


Sign in / Sign up

Export Citation Format

Share Document