loss modulus
Recently Published Documents


TOTAL DOCUMENTS

584
(FIVE YEARS 233)

H-INDEX

24
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 327
Author(s):  
Wiphada Mitbumrung ◽  
Numphung Rungraung ◽  
Niramol Muangpracha ◽  
Ploypailin Akanitkul ◽  
Thunnalin Winuprasith

The pretreatment process is an essential step for nanofibrillated cellulose production as it enhances size reduction efficiency, reduces production cost, and decreases energy consumption. In this study, nanofibrillated cellulose (NFC) was prepared using various pretreatment processes, either chemical (i.e., acid, basic, and bleach) or hydrothermal (i.e., microwave and autoclave), followed by disintegration using high pressure homogenization from oat bran fibers. The obtained NFC were used as an emulsifier to prepare 10% oil-in-water emulsions. The emulsion containing chemically pretreated NFC exhibited the smallest oil droplet diameter (d32) at 3.76 μm, while those containing NFC using other pretreatments exhibited d32 values > 5 μm. The colors of the emulsions were mainly influenced by oil droplet size rather than the color of the fiber itself. Both NFC suspensions and NFC emulsions showed a storage modulus (G′) higher than the loss modulus (G″) without crossing over, indicating gel-like behavior. For emulsion stability, microwave pretreatment effectively minimized gravitational separation, and the creaming indices of all NFC-emulsions were lower than 6% for the entire storage period. In conclusion, chemical pretreatment was an effective method for nanofiber extraction with good emulsion capacity. However, the microwave with bleaching pretreatment was an alternative method for extracting nanofibers and needs further study to improve the efficiency.


2022 ◽  
Vol 12 (2) ◽  
pp. 771
Author(s):  
Anusha Wei Asohan ◽  
Rokiah Hashim ◽  
Ku Marsilla Ku Ishak ◽  
Zuratul Ain Abdul Hamid ◽  
Nurshafiqah Jasme ◽  
...  

In this study, we aimed to prepare and characterise hydrogel formulations using cellulose nanocrystals (CNCs), alginate (Alg), and polyethylene glycol diacrylate (PEGDA). The CNC/Alg/PEGDA formulations were formed using a double network crosslinking approach. Firstly, CNC was extracted from oil palm trunk, and the size and morphology of the CNCs were characterised using TEM analysis. Secondly, different formulations were prepared using CNCs, Alg, and PEGDA. The mixtures were crosslinked with Ca2+ ions and manually extruded using a syringe before being subjected to UV irradiation at 365 nm. The shear-thinning properties of the formulations were tested prior to any crosslinking, while the determination of storage and loss modulus was conducted post extrusion after the Ca2+ ion crosslink using a rheometer. For the analysis of swelling behaviour, the constructs treated with UV were immersed in PBS solution (pH 7.4) for 48 h. The morphology of the UV crosslinked construct was analysed using SEM imaging. The extracted CNC exhibited rod-like structures with an average diameter and length of around 7 ± 2.4 and 113 ± 20.7 nm, respectively. Almost all CNC/Alg/PEGDA formulations (pre-gel formulation) displayed shear-thinning behaviour with the power-law index η < 1, and the behaviour was more prominent in the 1% [w/v] Alg formulations. The CNC/Alg/PEGDA with 2.5% and 4% [w/v] Alg displayed a storage modulus dominance over loss modulus (G′ > G″) which suggests good shape fidelity. After the hydrogel constructs were subjected to UV treatment at 365 nm, only the F8 construct [4% CNC: 4% Alg: 40% PEGDA] demonstrated tough and flexible characteristics that possibly mimic the native articular cartilage property due to a similar water content percentage (79.5%). In addition, the small swelling ratio of 4.877 might contribute to a minimal change of the 3D construct’s geometry. The hydrogel revealed a rough and wavy surface, and the pore size ranged from 3 to 20 µm. Overall, the presence of CNCs in the double network hydrogel demonstrated importance and showed positive effects towards the fabrication of a potentially ideal 3D bioprinted scaffold.


2022 ◽  
Author(s):  
Richard Carl Gerum ◽  
Elham Mirzahossein ◽  
Mar Eroles ◽  
Jennifer Elsterer ◽  
Astrid Mainka ◽  
...  

Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher-level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 μm wide microfluidic channel. The fluid shear stress induces large, near ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks.


2021 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Laongdaw Techawinyutham ◽  
Arnuparb Prasarnsri ◽  
Suchart Siengchin ◽  
Rapeephun Dangtungee ◽  
Sanjay Mavinkere Rangappa

Anti-rodent polymer composites were prepared using non-toxic substances denatonium benzoate (DB) and capsicum oleroresin (CO) mixed with polyvinyl chloride (PVC) matrix. DB is mixed in zinc stearate (ZnSt) called DB/ZnSt, and CO, providing burning sensation, is impregnated in mesoporous silica named SiCO. There are three sets of sample: Blank, composites Set I and Set II. Set I consists of DB/ZnSt at concentration of 1.96 wt% and SiCO at concentration of 12.16 wt%, 14.47 wt%, 18.75 wt% and 23.53 wt%. Set II comprises SiCO at the same amount of Set I. The anti-rodent composites studied are anti-gnawing, surface morphology, thermo-mechanical and rheological properties. Anti-rodent testing is analyzed by one-way blocked analysis of variance (ANOVA) and compared with Tukey test with a 95% level of significance, presenting good anti-gnawing efficiency. The best rat-proof sample is II.4, consisting of SiCO 23.53 wt%, which presents percentage of weight loss from gnawing at 1.68% compared to weight loss of neat PVC at 59.74%. The addition of SiCO at concentration ranging from 12.16 to 23.53 wt% reduces tensile strength around 25–50%, elongation at break strength around 2–23%, shear storage modulus (G′) around 30%, shear loss modulus (G″) shear viscosity (η) and glass transition (Tg) around 43% compared to Blank. The increase in SiCO concentration slightly improves the thermal stability of PVC composites around 3%, but the addition of DB/ZnSt at 1.96 wt% slightly reduces those properties.


2021 ◽  
pp. 108201322110692
Author(s):  
Abdolkhalegh Golkar ◽  
Jafar Mohammadzadeh Milani ◽  
Ali Motamedzadeghan ◽  
Reza Esmaeilzadeh Kenari

Thermal-ultrasound treatment is a green technology that can significantly alter the structural and functional properties of starches. This research extend the effect of at different temperatures (25 °C, 45 °C, and 65 °C) and times (30 and 60 min) on the physicochemical, structural, and rheological properties of corn starch was studied. Amylose content, solubility, swelling power, and the least gelling content increased with increasing temperature and time. Starch treated at 45 °C for 30 min had the lowest syneresis among all treatments. Thermal-ultrasound treatment at 25 °C and 65 °C for 60 min caused increasing paste clarity. Microscopic observations demonstrated that the starch granules were agglomerated at 65 °C. Although the crystallinity of samples decreased from 35.42% to 8.94%, the storage modulus was more than the loss modulus during the frequency sweep test. Pasting properties showed that pasting temperatures shifted to higher values after treatment. Nonetheless, the maximum viscosity decreased, and the final viscosity of the treated samples demonstrated that short-term retrogradation could deteriorate. Results showed that thermal-ultrasound is a viable technique for starch modification compared to conventional thermal and ultrasound treatments.


2021 ◽  
Vol 11 (24) ◽  
pp. 11815
Author(s):  
Meiwen Lv ◽  
Xiukang Wang ◽  
Noman Walayat ◽  
Zhongli Zhang ◽  
Asad Nawaz ◽  
...  

This study aimed to analyze the cryoprotective effect of a ovalbumin (OVA) and β-cyclodextrin (βCD) mixture (3:1, OVA/βCD) on the structure, rheology and gelling properties of myofibrillar proteins (MPs) during 90 days of frozen storage. A mixture of OVA/βCD at different concentrations (0, 2, 4, and 6%) was added to MPs and stored at −18 °C for 90 days. The addition of OVA/βCD significantly decreased the sulfhydryl contents while it increased the surface hydrophobicity, which was closely connected with tertiary structural changes. Circular dichroism analysis showed that the addition of OVA/βCD enhanced the stability of the secondary structure by inhibiting the decline in the α-helix. Rheological properties analysis indicated that 6% OVA/βCD treatment showed better storage modulus (G’) and loss modulus (G”). In addition, treatment of OVA/βCD showed better gel forming properties than the control group (0%), helping to form a homogeneous and denser gel network. The results proved that 6% OVA/βCD could be act as a promising cryoprotectant, which can improve the structure and gel behavior of Culter alburnus MPs during frozen storage. Moreover, OVA/βCD could be a potential alternative to conventional cryoprotectants at the industrial level to increase the economic and commercial values of seafood products.


Author(s):  
Jing Chen ◽  
Peng An ◽  
Hua Zhang ◽  
Yansheng Zhang ◽  
Hua Wei ◽  
...  

Abstract Chondrocyte spheroids in 3D hydrogel are more beneficial to improve their survival and maintain chondrogenic phenotype comparing to dissociated chondrocytes. However, in-situ inducing cell into spheroids rather than encapsulating spheroids in a hydrogel remains a tremendous challenge because of the limitations of biochemical and viscoelastic controllability for hydrogel. Herein, a hydrogel consisting of photo-crosslinkable chitosan methacrylate (CHMA) and semi-interpenetrating polyvinyl alcohol (PVA) is developed as a cell-responsive matrix with controllable viscoelastic properties. The proposed CHMA-PVA precursor preferentially exhibits a weak gel-like state with a storage modulus of 16.9 Pa, loss modulus of 13.0 Pa and yielding stain of 1%, which could allow chondrocyte to vigorously move and assemble but hinder their precipitation before crosslinking. The chondrocytes could form microaggregates within 8 h in vitro and keep high viability. Moreover, subcutaneous implantation experiments demonstrate that the CHMA/PVA hydrogels are biocompatible and degrade within five weeks in vivo. The cell-free hydrogels are further placed in cylindrical cartilage defects in the rabbit femoral condyle and examined 8 weeks postoperatively. Gross, histological and immunohistochemical analyses reveal a significant acceleration for the cartilage regeneration. These findings suggest that this novel cell adhesion-responsive and histo-compatible hydrogel is promising for cartilage regeneration.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012049
Author(s):  
Yan-qing Bian ◽  
Pu-cheng Wu ◽  
Jing Hao ◽  
Quan Shi ◽  
Guo-wei Qin

Abstract Based on the previous research on the rheological properties of nanofluids by many scholars at home and abroad, to solve the problem that the viscosity of conventional polymer water control agents is large and cannot meet the demand for increasing production capacity in the process of tight gas reservoir exploitation, this paper takes self-made nanofluids as the research object, tests the rheological properties of self-made nanofluids by rheological experiment, and systematically studies the effects of concentration, temperature and shear action on the viscosity of nanofluids, and the dynamic viscoelasticity and thixotropy of nanofluids were discussed. The results show that the rheological type of nanofluid belongs to power-law fluid, but it is related to the shear rate. The viscosity of nanofluids increases with the increase of concentration; when the temperature increases, the viscosity of nanofluids decreases and the fluidity increases; under the shear action, the viscosity of nanofluid changes very little and has good shear resistance; the dynamic viscoelastic test shows that the storage modulus G´ of the nanofluid is larger than the loss modulus G”, showing elastic characteristics; the thixotropy test shows that when the shear rate is accelerated, the viscosity decreases with time, and when the shear rate is slowed down, the viscosity recovers rapidly with time, which has good thixotropy. The research results provide an important theoretical basis for further research on the application of nanomaterials in tight oil and gas reservoirs.


2021 ◽  
Vol 63 (12) ◽  
pp. 1090-1096
Author(s):  
Dilek Atilla ◽  
Binnur Gören

Abstract The aim of this study is to investigate the dynamic mechanical properties of composite materials reinforced by mineral experimentally. Graphene and huntite minerals were added to epoxy resin at different weight ratios (wt.-%) as 0.5 weight percent, 1 weight percent and 3 weight percent, to examine the effect of mineral types and percentages on the resulting dynamic mechanical properties. In addition, the effect of non-layered huntite unlike graphene, with a nano-sized grain structure, was investigated. Thus, glass transition temperature (Tg), storage modulus (E’), loss modulus (E”) and damping ratio (tan δ) values were determined and compared. Moreover, a tensile test was performed in order to explain the relation between stress and strain. It was seen that adding different minerals caused different results according to types and proportions. In general, adding minerals to the pure resin increased the storage modulus and loss modulus, whereas the damping ratio (tan δ) decreased compared to the pure resin.


2021 ◽  
Vol 18 (185) ◽  
Author(s):  
M. Gabriela Espinosa ◽  
Gaston A. Otarola ◽  
Jerry C. Hu ◽  
Kyriacos A. Athanasiou

Physiological loading of knee cartilage is highly dynamic and may contribute to the progression of osteoarthritis. Thus, an understanding of cartilage's dynamic mechanical properties is crucial in cartilage research. In this study, vibrometry was used as a fast (2 h), noncontact and novel alternative to the slower (30 h), traditional mechanical and biochemical assays for characterization of cartilage from the condyle, patella, trochlear groove and meniscus. Finite-element models predicted tissue resonant frequencies and bending modes, which strongly correlated with experiments ( R 2 = 0.93). Vibrometry-based viscoelastic properties significantly correlated with moduli from stress relaxation and creep tests, with correlation strengths reaching up to 0.78. Loss modulus also strongly correlated with glycosoaminoglycan (GAG) content. Dynamic properties measured by vibrometry significantly differed among various knee cartilages, ranging between 6.1 and 56.4 MPa. Interestingly, meniscus viscoelastic properties suggest that contrary to common belief, it may lack shock absorption abilities; instead, condylar hyaline cartilage may be a better shock absorber. These data demonstrate for the first time that vibrometry is a noncontact approach to dynamic mechanical characterization of hyaline and fibrocartilage cartilage with concrete relationships to standard quasi-static mechanical testing and biochemical composition. Thus, with a single tool, vibrometry greatly facilitates meeting multiple regulatory recommendations for mechanical characterization of cartilage replacements.


Sign in / Sign up

Export Citation Format

Share Document