Improvement of Vibration Damping Capacity and Fracture Toughness in Composite Laminates by the Use of Polymeric Interleaves

2001 ◽  
Vol 123 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Ronald F. Gibson ◽  
Yu Chen ◽  
Hui Zhao

It is shown that, under certain conditions, simultaneous improvement of vibration damping capacity and interlaminar fracture toughness in composite laminates can be achieved by using polymeric interleaves between the composite laminae. The specific case of Mode II interlaminar fracture toughness and flexural damping capacity of interleaved composite laminates is studied. Graphite/epoxy, E-glass/epoxy and E-glass/polyetherimide composite laminates with polymeric interleaves of several different thicknesses and materials were tested using both the end notch flexure (ENF) test for Mode II fracture toughness and the impulse-frequency response test for flexural damping capacity. The Mode II energy release rate GIIc for all three composites increased linearly with increasing interleaf thickness up to a critical thickness, then dropped off with further increases in thickness. The damping loss factor η for all three composites increased linearly with increasing interleaf thickness up to the maximum thickness. Analytical models for predicting the influence of interleaves on GIIc and η are developed, along with a hypothesis for the critical thickness effect with regard to fracture toughness.

1999 ◽  
Author(s):  
Ronald F. Gibson ◽  
Hui Zhao

Abstract It is shown that simultaneous improvement of vibration damping capacity and interlaminar fracture toughness in composite laminates can be achieved by using polymeric interleaves between the composite laminae. The specific case of Mode II interlaminar fracture toughness and flexural damping capacity of interleaved composite laminates is studied. Graphite/epoxy, E-glass/epoxy and E-glass/polyetherimide composite laminates with polymeric interleaves of several different thicknesses and materials were tested using both the end notch flexure (ENF) test for Mode II fracture toughness and the impulse-frequency response test for flexural damping capacity. The Mode II energy release rate GIIc for all three composites increased linearly with increasing interleaf thickness up to a critical thickness, then dropped off with further increases in thickness. The damping loss factor η for all three composites increased linearly with increasing interleaf thickness up to the maximum thickness. Analytical models for predicting the influence of interleaves on GIIc and η are developed, along with a hypothesis for the critical thickness effect with regard to fracture toughness.


2011 ◽  
Vol 194-196 ◽  
pp. 1697-1702
Author(s):  
Li Liang ◽  
Pu Rong Jia ◽  
Gui Qiong Jiao

Delamination is one of the important damage modes in the fiber-reinforced composite laminates. The interlaminar fracture toughness is the key parameter in delamination failure analysis of composites. The stress analysis by a finite element modeling has shown that the shear stress is very large near the ply splicing area. So the delamination failure is mainly dependent on the mode II fracture toughness. A new way of loading in tensile testing is proposed for the measurement of mode II fracture toughness. Specific specimen with splicing plies has been designed and used for the experiment. Testing study on the carbon-fiber-reinforced laminate with ply splicing was performed. Steady crack propagation has been seen by the tensile testing of the specimen. Mode II fracture toughness GIIC of the laminate has been determined by the experiment data analysis. The experiment and numerical analysis shows that the tensile testing for the measurement of mode II interlaminar fracture toughness is feasible.


2021 ◽  
pp. 002199832110200
Author(s):  
Tony Wente ◽  
Xinyu Mao ◽  
Danielle Zeng ◽  
Homa Torab ◽  
Jeff Dahl ◽  
...  

Fiber reinforced composite materials are a heavily sought after material for next generation vehicles for light-weighting components due to their high specific strength and stiffness. However, these materials have relatively weak interlaminar strength and are prone to delamination. This is especially the case when a delamination crack already exists. Quasi-3D (Q3D) braided composites seek to solve this issue by weaving the bias tows into the adjacent (above and below) plies. The plies are physically connected through fiber tows as opposed to being bonded simply by the epoxy, and the composite will achieve a higher interlaminar strength due to fiber failure being required for crack propagation as opposed to simply matrix failure. The [Formula: see text] UD and Q3D carbon composites are investigated in this study for their better in-plane isotropy. Mode I and Mode II interlaminar fracture toughness tests were conducted on UD and Q3D samples. In Mode I experiments, the samples were continuously loaded to full beam split using the double cantilever beam method to obtain the fracture toughness throughout the sample. 4ENF is used to measure the Mode II fracture toughness to create a full R-curve for the architectures.


Sign in / Sign up

Export Citation Format

Share Document