critical thickness
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 53)

H-INDEX

54
(FIVE YEARS 3)

Author(s):  
Yajuan Zhao ◽  
Zhigang Yin ◽  
Xingxing Li ◽  
Maoyuan Zheng ◽  
Yong Cheng ◽  
...  

Abstract We report the stabilization of metastable tetragonal BiFeO3 epilayer on ZnO(0001) surface. X-ray reciprocal space map characterizations show that the BiFeO3 film is of true tetragonal symmetry, but not the commonly observed monoclinic structure. The critical thickness of the tetragonal BiFeO3 is higher than 140 nm, much larger than that reported previously. Despite the considerable lattice mismatch and symmetry mismatch, tetragonal BiFeO3 can be formed on ZnO(0001) though domain matching epitaxy which is featured by anisotropic growth. We show that by taking into account the elastic energy during the initial semi-coherent growth, the tetragonal phase is lower than the thermally stable rhombohedral phase in total energy by 70 meV per formula unit. Moreover, local piezoelectric characterizations reveal a coercive field of 360 kV/cm and a piezoelectric constant of 48 pm/V. The integration of tetragonal BiFeO3 with robust ferroelectricity on the platform of ZnO has potentials for all-oxide electronics applications.


2021 ◽  
Vol 33 (11) ◽  
pp. 115603
Author(s):  
Vladimir V Dirko ◽  
Kirill A Lozovoy ◽  
Andrey P Kokhanenko ◽  
Alexander V Voitsekhovskii

Abstract In this paper, we analyze superstructural transitions during epitaxial growth of two-dimensional layers and the formation of quantum dots by the Stranski–Krastanov mechanism in elastically stressed systems by the reflection high-energy electron diffraction method. Detailed dependences of the periodicity parameter N of the 2 × N reconstruction on the effective thickness of the deposited material in a wide range of growth temperatures during epitaxy of germanium on a silicon surface with a crystallographic orientation (001) are obtained. Superstructural transitions and the change in the value of the parameter N at low temperatures of epitaxy in this system have been investigated for the first time. It is shown that the length of dimer rows in such a reconstruction during the growth of pure germanium on silicon can reach a value of no less than N = 11. A relationship is found between the value of the parameter N, determined by elastic strains in the system, and the critical thickness of the transition from two-dimensional to three-dimensional growth. Based on this relationship, a physical mechanism is proposed that explains the nature of the temperature dependence of the critical thickness of the Stranski–Krastanov transition, which has been the subject of constant scientific disputes until now.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nie Qingke ◽  
Li Xilai ◽  
Yuan Wei ◽  
Wang Anli ◽  
Wang Wei ◽  
...  

The thickness of a karst cave roof at the bottom of a socketed pile plays an important role in the vertical bearing capacity of the socketed pile in the karst region. In practice, its thickness is simply recommended to be not less than 3 times the diameter of the socketed pile, regardless of the geological conditions and the size of the cave itself. In this study, we present an approach for calculating the critical thickness-to-diameter ratio of a karst cave roof η (η = h/d, the ratio of karst cave roof thickness to pile diameter) based on the generalized Hoek–Brown criterion by virtue of the limit analysis method, which considers the pile tip load, hardness degree of the intact rock, and rock mass quality. The analysis results show that less load at the bottom of the pile, higher quality of rock mass, and more hard rock all lead to a smaller critical thickness-diameter ratio, whereas the critical thickness-to-diameter ratio is greater. The validity of the proposed method is verified through a physical model test.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012005
Author(s):  
D D Dukhan ◽  
S V Balakirev ◽  
N E Chernenko ◽  
M M Eremenko ◽  
M S Solodovnik

Abstract In this paper, we present the results of kinetic Monte Carlo study of the In/GaAs growth by droplet epitaxy in conditions of non-stationary vapor supersaturation. These conditions allow achievement of the independent control of size and surface density of nanostructures. The material redistribution is realized on the surface when indium deposition is interrupted and leads to a decrease in the critical thickness of droplet formation. An average droplet size increases with increase in interruption time whereas the surface density decreases. However, additional nucleation within the wetting layer can also be observed during the growth interruptions, which makes it possible to increase the surface density of droplets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen-Yuan Hsieh ◽  
Pei-Cheng Jiang ◽  
Wei-Hsiang Chen ◽  
Jyh-Shen Tsay

AbstractBy way of introducing heterogeneous interfaces, the stabilization of crystallographic phases is critical to a viable strategy for developing materials with novel characteristics, such as occurrence of new structure phase, anomalous enhancement in magnetic moment, enhancement of efficiency as nanoportals. Because of the different lattice structures at the interface, heterogeneous interfaces serve as a platform for controlling pseudomorphic growth, nanostructure evolution and formation of strained clusters. However, our knowledge related to the strain accumulation phenomenon in ultrathin Fe layers on face-centered cubic (fcc) substrates remains limited. For Fe deposited on Ir(111), here we found the existence of strain accumulation at the interface and demonstrate a strain driven phase transition in which fcc-Fe is transformed to a bcc phase. By substituting the bulk modulus and the shear modulus and the experimental results of lattice parameters in cubic geometry, we obtain the strain energy density for different Fe thicknesses. A limited distortion mechanism is proposed for correlating the increasing interfacial strain energy, the surface energy, and a critical thickness. The calculation shows that the strained layers undergo a phase transition to the bulk structure above the critical thickness. The results are well consistent with experimental measurements. The strain driven phase transition and mechanism presented herein provide a fundamental understanding of strain accumulation at the bcc/fcc interface.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2826
Author(s):  
Huijie Li ◽  
Huanhuan Wang ◽  
Wenshuai Gao ◽  
Zheng Chen ◽  
Yuyan Han ◽  
...  

We report a systematic study on the thickness-dependent superconductivity and transport properties in exfoliated layered topological superconductor β-PdBi2. The superconducting transition temperature Tc is found to decrease with the decreasing thickness. Below a critical thickness of 45 nm, the superconductivity is suppressed, but followed by an abrupt resistance jump near Tc, which is in opposite to the behavior in a superconductor. We attribute suppressed Tc to the enhanced disorder as the thickness decreases. The possible physical mechanisms were discussed for the origination of sharply increased resistance in thinner β-PdBi2 samples.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3515
Author(s):  
José Antonio González-Mijangos ◽  
Enrique Lima ◽  
Roberto Guerra-González ◽  
Fernando Iguazú Ramírez-Zavaleta ◽  
José Luis Rivera

The mechanical stability of nanothin free-standing films made of melted polyethylene chains was predicted via molecular dynamics simulations in the range of 373.15–673.15 K. The predicted critical thickness, tc, increased with the square of the temperature, T, with additional chains needed as T increased. From T = 373.15 K up to the thermal limit of stability for polyethylene, tc values were in the range of nanothin thicknesses (3.42–5.63 nm), which approximately corresponds to 44–55 chains per 100 nm2. The density at the center of the layer and the interfacial properties studied (density profiles, interfacial thickness, and radius of gyration) showed independence from the film thickness at the same T. The polyethylene layer at its tc showed a lower melting T (<373.15 K) than bulk polyethylene.


Sign in / Sign up

Export Citation Format

Share Document