scholarly journals Discussion: “Combinations for the Free-Vibration Behavior of Anisotropic Rectangular Plates Under General Edge Conditions” (Narita, Y., 2000, ASME J. Appl. Mech., 67, pp. 568–573)

2001 ◽  
Vol 68 (4) ◽  
pp. 685-685 ◽  
Author(s):  
C. W. Bert
1999 ◽  
Vol 67 (3) ◽  
pp. 568-573 ◽  
Author(s):  
Y. Narita

The free-vibration behavior of rectangular plates constitutes an important field in applied mechanics, and the natural frequencies are known to be primarily affected by the boundary conditions as well as aspect and thickness ratios. Any one of the three classical edge conditions, i.e., free, simply supported, and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations the present paper introduces the Polya counting theory in combinatorial mathematics. Formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three classical edge conditions and is used to numerically verify the numbers. In this numerical study the number of combinations in the free-vibration behavior is determined for some plate models by using the derived formulas. Results are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the modified Ritz method. [S0021-8936(00)02203-0]


Author(s):  
Yoshihiro Narita

Abstract The free vibration behavior of rectangular plates provides important technical information in structural design, and the natural frequencies are primarily affected by the boundary conditions as well as aspect and thickness ratios. One of the three classical edge conditions, i.e., free, simple supported and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations, the present paper introduces the Polya counting theory in combinatorial mathematics, and formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three edge conditions and is used to numerically verify the numbers. In numerical experiments, the number of combinations in the free vibration behaviors is determined for some plate models by using the derived formulas, and are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the Ritz method.


1977 ◽  
Vol 44 (4) ◽  
pp. 743-749 ◽  
Author(s):  
D. J. Gorman

In this paper attention is focused on the free-vibration analysis of rectangular plates with combinations of clamped and simply supported edge conditions. Plates with at least two opposite edges simply supported are not considered as they have been analyzed in a separate paper. It is well known that the family of problems considered here have presented researchers with a formidable challenge over the years. This is because they are not directly amenable to Le´vy-type solutions. It has been pointed out in the literature that most of the existing solutions are approximate in that they either do not satisfy exactly the governing differential equation or the boundary conditions, or both. In a new approach taken by the author the method of superposition is exploited for handling these dynamic problems. It is found that solutions of any degree of exactitude are easily obtained. The governing differential equation is completely satisfied and the boundary conditions are satisfied to any degree of exactitude by merely increasing the number of terms in the series. Convergence is shown to be remarkably rapid and tabulated results are provided for a large range of parameters. The immediate applicability of the method to problems involving elastic restraint or inertia forces along the plate edges has been discussed in an earlier publication.


Sign in / Sign up

Export Citation Format

Share Document