Thermal Contact Conductance of Non-Flat, Rough, Metallic Coated Metals

2002 ◽  
Vol 124 (3) ◽  
pp. 405-412 ◽  
Author(s):  
M. A. Lambert ◽  
L. S. Fletcher

Thermal contact conductance is an important consideration in such applications as nuclear reactor cooling, electronics packaging, spacecraft thermal control, and gas turbine and internal combustion engine cooling. In many instances, the highest possible thermal contact conductance is desired. For this reason, soft, high conductivity, metallic coatings are sometimes applied to contacting surfaces (often metallic) to increase thermal contact conductance. O’Callaghan et al. (1981) as well as Antonetti and Yovanovich (1985, 1988) developed theoretical models for thermal contact conductance of metallic coated metals, both of which have proven accurate for flat, rough surfaces. However, these theories often substantially overpredict the conductance of non-flat, rough, metallic coated metals. In the present investigation, a semi-empirical model for flat and non-flat, rough, uncoated metals, previously developed by Lambert and Fletcher (1996), is employed in predicting the conductance of flat and non-flat, rough, metallic coated metals. The models of Antonetti and Yovanovich (1985, 1988) and Lambert and Fletcher (1996) are compared to experimental data from a number of investigations in the literature. This entailed analyzing the results for a number of metallic coating/substrate combinations on surfaces with widely varying flatness and roughness. Both models agree well with experimental results for flat, rough, metallic coated metals. However, the semi-empirical model by Lambert and Fletcher (1996) is more conservative than the theoretical model by Antonetti and Yovanovich (1985, 1988) when compared to the majority of experimental results for non-flat, rough, metallic coated metals.

1997 ◽  
Vol 119 (4) ◽  
pp. 684-690 ◽  
Author(s):  
M. A. Lambert ◽  
L. S. Fletcher

Junction thermal conductance is an important consideration in such applications as thermally induced stresses in supersonic and hypersonic flight vehicles, nuclear reactor cooling, electronics packaging, spacecraft thermal control, gas turbine and internal combustion engine cooling, and cryogenic liquid storage. A fundamental problem in analyzing and predicting junction thermal conductance is determining thermal contact conductance of nonflat rough metals. Workable models have been previously derived for the limiting idealized cases of flat, rough, and spherical smooth surfaces. However, until now no tractable models have been advanced for nonflat rough “engineering” surfaces which are much more commonly dealt with in practice. The present investigation details the synthesis of previously derived models for macroscopically nonuniform thermal contact conductance and contact of nonflat rough spheres into a thermomechanical model, which is presented in an analytical/graphical format. The present model agrees well with representative experimental conductance results from the literature for stainless steel 303 and 304 with widely varying nonflatness (2 to 200 μm) and roughness (0.1 to 10 μm).


2009 ◽  
Vol 25 (3) ◽  
pp. 307-311 ◽  
Author(s):  
K. Goudarzi ◽  
M. H. Shojaeefard

AbstractAn experimental study for determining the thermal contact conductance between two periodically contacting surfaces is presented. The influence of the frequency of contact upon the thermal contact conductance is investigated. Also, the results show that the thermal contactconductance decreases as the frequency of contact increases. The experimental results obtained from present work are in agreement with the previous published data.


2020 ◽  
Vol 15 ◽  

For the optimization of the annealing process of aluminium coils, simulation of the process is often performed. To simulate the process with higher accuracy, reliable input parameters are required and the thermal conductivity (thermal contact conductance) is one of them. In the present study, the thermal conductivity and thermal contact conductance of AA3003 alloy sheets were measured by a steady state comparative longitudinal heat flow method at different contact pressure. To evaluate the thermal conductance at the interface, thermal resistance network model' was applied. In addition, the surface roughness of the sheets was also investigated. Based on the measurement results, the semi-empirical equation for the relationship between thermal contact conductance and contact pressure was obtained


Sign in / Sign up

Export Citation Format

Share Document