Model Predictive Control of a Fuel Injection System with a Radial Basis Function Network Observer

2002 ◽  
Vol 124 (4) ◽  
pp. 648-658 ◽  
Author(s):  
Chris Manzie ◽  
Marimuthu Palaniswami ◽  
Daniel Ralph ◽  
Harry Watson ◽  
Xiao Yi

This paper proposes a new Model Predictive Control scheme incorporating a Radial Basis Function Network Observer for the fuel injection problem. Two new contributions are presented here. First a Radial Basis Function Network is used as an observer for the air system. This allows for gradual adaptation of the observer, ensuring the control scheme is capable of maintaining good performance under changing engine conditions brought about by engine wear, variations between individual engines, and other similar factors. The other major contribution is the use of model predictive control algorithms to compensate for the fuel pooling effect on the intake manifold walls. Two model predictive control algorithms are presented which enforce input, and input and state constraints. In this way stability under the constraints is guaranteed. A comparison between the two constrained MPC algorithms is qualitatively presented, and conclusions are drawn about the necessity of constraints for the fuel injection problem. Simulation results are presented that demonstrate the effectiveness of the control scheme, and the proposed control approach is validated on a four-cylinder spark ignition engine.

1997 ◽  
Vol 119 (1) ◽  
pp. 94-97 ◽  
Author(s):  
Dimitry Gorinevsky

This paper considers a problem of bioreactor control, which is formulated in Anderson and Miller (1990) and Ungar (1990) as a benchmark problem for application of neural network-based adaptive control algorithms. A completely adaptive control of this strongly nonlinear system is achieved with no a priori knowledge of its dynamics. This becomes possible thanks to a novel architecture of the controller, which is based on an affine Radial Basis Function network approximation of the sampled-data system mapping. Approximation with such net-work could be considered as a generalization of a standard practice to linearize a nonlinear system about the working regime. As the network is affine in the control components, it can be inverted with respect to the control vector by using fast matrix computations. The considered approach includes several features, recently introduced in some advanced process control algorithms. These features—multirate sampling, on-line adaptation, and Radial Basis Function approximation of the system nonlinearity—are crucial for the achieved high performance of the controller.


Sign in / Sign up

Export Citation Format

Share Document