injection control
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 46)

H-INDEX

17
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 277
Author(s):  
Wen-Chang Tsai

The fuel injection system is one of the key components of an in-cylinder direct injection engine. Its performance directly affects the economy, power and emission of the engine. Previous research found that the Taguchi method can be used to optimize the fuel injection map and operation parameters of the injection system. The electronic control injector was able to steadily control the operation performance of a high-pressure fuel injection system, but its control was not accurate enough. This paper conducts an experimental analysis for the fuel injection quantity of DI injectors using the Taguchi-Regression approach, and provides a decision-making analysis to improve the design of electronic elements for the driving circuit. In order to develop a more stable and energy-saving driver, a functional experiment was carried out. The hybrid Taguchi-regression algorithm for injection quantity of a direct injection injector was examined to verify the feasibility of the proposed algorithm. This paper also introduces the development of a high-pressure fuel injection system and provides a new theoretical basis for optimizing the performance of an in-cylinder gasoline direct injection engine. Finally, a simulation study for the fuel injection control system was carried out under the environment of MATLAB/Simulink to validate the theoretical concepts.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7082
Author(s):  
Yun Zeng ◽  
Jing Qian ◽  
Fengrong Yu ◽  
Hong Mei ◽  
Shige Yu

Invertor as a virtual synchronous generator (VSG) to provide virtual inertia and damping can improve the stability of a microgrid, in which the damping is one of the fundamental problems in dynamics. From the view of the Hamiltonian dynamics, this paper researches the damping formation mechanism and damping injection control of VSG. First, based on the energy composition and dynamic characteristics of VSG, the differential equations system of VSG is established and is transformed into the generalized Hamiltonian system. Second, the effects of the three parameters of VSG, the damping coefficient D, active power droop coefficient, and time constant of excitation TE on damping characteristics are researched from a dynamic perspective, and simulation research is carried out with an isolated microgrid. Lastly, the control design method of Hamiltonian structure corrections used to add the damping factor and design the equivalent control inject damping to improve the stability of the isolated microgrid. Research shows that the voltage and frequency stability of the isolated microgrid can be effectively improved by selecting three key parameters of VSG and damping injection control. The innovations of this paper are 1. The Hamiltonian model of the inverter is deduced and established by taking the inverter as a virtual generator. 2. Based on the Hamiltonian model, damping characteristics of inverter in the microgrid are studied. 3. Hamiltonian structure correction method is applied to the inverter, and equivalent damping injection is designed to improve the stability of the microgrid.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6244
Author(s):  
Anderson Rodrigo Piccini ◽  
Geraldo Caixeta Guimarães ◽  
Arthur Costa de Souza ◽  
Ana Maria Denardi

The main objective of this research is to propose an active and reactive power injection control in order to mitigate voltage sags. The proposed control strategy works in conjunction with a modified version of an automatic voltage regulator (AVR), where it will act on the active and reactive powers injected by the inverter to reduce the effects of voltage sags. In this way, the control will avoid possible shutdowns and damage to the equipment connected to the grid. The voltage improvement can be perceived for consumers connected to the power system. Modifications in AVR model and parameters are performed to speed up its performance, thus identifying the short-duration voltage variations (SDVV) and, consequently, the control acts to alter the powers, decreasing the active power injection and increasing the reactive power based on inverter capacity during the momentary voltage dip (MVD). Finally, when the fault is cleared, all values return to the pre-fault condition, so that the inverter only operates with active power. A 75 kW three-phase grid-connected photovoltaic system (GCPVS) equipped with the proposed control was inserted in a distribution grid of the city of Palmas, state of Tocantins, Brazil, and all of the computer simulations were performed on the Matlab/Simulink®.


Author(s):  
Guojin Chen ◽  
Jiawen Wang ◽  
Chang Chen ◽  
Yiming Yuan ◽  
Long Xu

Aiming at the problems of low precision, poor anti-interference and poor follow-up in the control parameters for the diesel engine fuel injection system, this paper studies the control method of the high-pressure common rail electronic control fuel injection system of the diesel engine, constructs the high-pressure common rail fuel injection control system based on the ECU, and establishes the speed segment PID control model of fuel injection quantity, common rail pressure, fuel injection timing and fuel injection rate by using MATLAB/Simulink. The fuel injection quantity and timing are simulated. In order to realize all-round and flexible control of the diesel engine under different working conditions, and to achieve the desired optimal performance in all aspects, the optimization control method of the injection law for the diesel engine is studied. The diesel engine fuel injection control strategy based on speed segment PID and operating parameter adaptation is proposed to realize precise control of the common rail pressure, injection quantity, injection timing and injection rate under different working conditions. The simulation calculation and bench test show that the maximum fluctuation of rail pressure at idle speed is only 5 MPa, and the time to reach stability is only 1.25 s, which greatly improves the control accuracy, anti-interference and follow-up ability of the injection parameters.


2021 ◽  
Vol 23 (2) ◽  
pp. 352-358
Author(s):  
Mariusz Kamiński ◽  
Piotr Budzyński ◽  
Jacek Hunicz ◽  
Jerzy Józwik

The objective of this study was to determine changes in fuel delivery rate by common rail system injectors during their simulated operation on a test stand. Four Bosch injectors used, among others, in Fiat 1.3 Multijet engines were tested. The injectors were operated on a test rig at room temperature for 500 hours (more than 72 million work cycles). During the test, pressure and injection frequency were changed. Changes in the operating parameters were estimated based on obtained injection characteristics and effective flow area determined thereby. The observed changes in fuel delivery rate were compared with results of the surface analysis of control valves and nozzle needles. Despite the stated lack of wear, significant changes in the dynamics of injector operation were observed, particularly at short injection times. Small pilot injections do not have to be corrected by the fuel injection control system because they do not affect the changes in torque; however, they do affect the combustion process. This creates conditions for increased emission of toxic exhaust components.


Sign in / Sign up

Export Citation Format

Share Document