vehicle motion
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 178)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
Author(s):  
James Mason ◽  
Raymond M Brach ◽  
Matthew Brach

In this third edition of Vehicle Accident Analysis & Reconstruction Methods, Raymond M. Brach and R. Matthew Brach have expanded and updated their essential work for professionals in the field of accident reconstruction. Most accidents can be reconstructed effectively using of calculations and investigative and experimental data: the authors present the latest scientific, engineering, and mathematical reconstruction methods, providing a firm scientific foundation for practitioners. Accidents that cannot be reconstructed using the methods in this book are rare. In recent decades, the field of crash reconstruction has been transformed through the use of technology. The advent of event data records (EDRs) on vehicles signaled the era of modern crash reconstruction, which utilizes the same physical evidence that was previously available as well as electronic data that are measured/captured before, during, and after the collision. There is increased demand for more professional and accurate reconstruction as more crash data is available from vehicle sensors. The third edition of this essential work includes a new chapter on the use of EDRs as well as examples using EDR data in accident reconstruction. Early chapters feature foundational material that is necessary for the understanding of vehicle collisions and vehicle motion; later chapters present applications of the methods and include example reconstructions. As a result, Vehicle Accident Analysis & Reconstruction Methods remains the definitive resource in accident reconstruction.


2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Ruibin Zhang ◽  
Yingshi Guo ◽  
Yunze Long ◽  
Yang Zhou ◽  
Chunyan Jiang

A vehicle motion state prediction algorithm integrating point cloud timing multiview features and multitarget interaction information is proposed in this work to effectively predict the motion states of traffic participants around intelligent vehicles in complex scenes. The algorithm analyzes the characteristics of object motion that are affected by the surrounding environment and the interaction of nearby objects and is based on the complex traffic environment perception dual multiline light detection and ranging (LiDAR) technology. The time sequence aerial view map and time sequence front view depth map are obtained using real-time point cloud information perceived by the LiDAR. Time sequence high-level abstract combination features in the multiview scene are then extracted by an improved VGG19 network model and are fused with the potential spatiotemporal interaction of the multitarget operation state data extraction features detected by the laser radar by using a one-dimensional convolution neural network. A temporal feature vector is constructed as the input data of the bidirectional long-term and short-term memory (BiLSTM) network, and the desired input-output mapping relationship is trained to predict the motion state of traffic participants. According to the test results, the proposed BiLSTM model based on point cloud multiview and vehicle interaction information is better than other methods in predicting the state of target vehicles. The results can provide support for the research to evaluate the risk of intelligent vehicle operation environment.


Author(s):  
Mark Colley ◽  
Pascal Jansen ◽  
Enrico Rukzio ◽  
Jan Gugenheimer

Autonomous vehicles provide new input modalities to improve interaction with in-vehicle information systems. However, due to the road and driving conditions, the user input can be perturbed, resulting in reduced interaction quality. One challenge is assessing the vehicle motion effects on the interaction without an expensive high-fidelity simulator or a real vehicle. This work presents SwiVR-Car-Seat, a low-cost swivel seat to simulate vehicle motion using rotation. In an exploratory user study (N=18), participants sat in a virtual autonomous vehicle and performed interaction tasks using the input modalities touch, gesture, gaze, or speech. Results show that the simulation increased the perceived realism of vehicle motion in virtual reality and the feeling of presence. Task performance was not influenced uniformly across modalities; gesture and gaze were negatively affected while there was little impact on touch and speech. The findings can advise automotive user interface design to mitigate the adverse effects of vehicle motion on the interaction.


2021 ◽  
Author(s):  
Han Zhang ◽  
Changzhi Zhou ◽  
Chunyan Wang ◽  
Wanzhong Zhao

Abstract This paper presents an energy efficient control strategy for electric vehicle (EV) driven by in-wheel-motors (IWMs) based on discrete adaptive sliding mode control (DASMC). The nonlinear vehicle model, tire model and the IWM model are established at first to represent the operation mechanism of the whole system. Based on the modeling, two virtual control variables are used to represent the longitudinal and yaw control efforts to coordinate the vehicle motion control. Then DASMC method is applied to calculate the required total driving torque and yaw moment, which can improve the tracking performance as well as the system robustness. According to the vehicle nonlinear model, the additional yaw moment can be expressed as a function of longitudinal and lateral tire forces. For further control scheme development, a tire force estimator using unscented Kalman filter is designed to estimate real-time tire forces. On these bases, energy efficient torque allocation method is developed to distribute the total driving torque and differential torque to each IWM, considering the motor energy consumption, the tire slip energy consumption and the brake energy recovery. Simulation results of the proposed control strategy using co-platform of Matlab/Simulink and CarSim® demonstrate that it can accomplish the vehicle motion control in a coordinated and economic way.


2021 ◽  
Vol 11 (24) ◽  
pp. 11752
Author(s):  
Antonio Tota ◽  
Enrico Galvagno ◽  
Luca Dimauro ◽  
Alessandro Vigliani ◽  
Mauro Velardocchia

Multimode hybrid powertrains have captured the attention of automotive OEMs for their flexible nature and ability to provide better and optimized efficiency levels. However, the presence of multiple actuators, with different efficiency and dynamic characteristics, increases the problem complexity for minimizing the overall power losses in each powertrain operating condition. The paper aims at providing a methodology to select the powertrain mode and set the reference torques and angular speeds for each actuator, based on the power-weighted efficiency concept. The power-weighted efficiency is formulated to normalize the efficiency contribution from each power source and to include the inertial properties of the powertrain components as well as the vehicle motion resistance forces. The approach, valid for a wide category of multimode powertrain architectures, is then applied to the specific case of a two-mode hybrid system where the engagement of one of the two clutches enables an Input Split or Compound Split operative mode. The simulation results obtained with the procedure prove to be promising in avoiding excessive accelerations, drift of powertrain components, and in managing the power flow for uphill and downhill vehicle conditions.


2021 ◽  
pp. 251-268
Author(s):  
Jingsheng Yu ◽  
Vladimir Vantsevich

Author(s):  
Hongge Zhang

At present, the active technology of automobiles is becoming more and more mature and the emergence of driverless vehicles makes it a hotspot in the field of road safety. A new intelligent collision avoidance method for unmanned vehicle motion obstacles is proposed. The kinematics model of unmanned vehicles is established and linearized to obtain the kinematics linear tracking error model of unmanned vehicles and predict the future behavior of unmanned vehicles. The intelligent collision avoidance can be achieved by improving the artificial potential field model of the unmanned vehicle after understanding the future behavior and obstacle information of the unmanned vehicle. The experimental results show that the method has a high detection rate and success rate of obstacle avoidance and low total time-consuming in the process of behavior selection and path planning. It can quickly make collision avoidance responses and reduce the possibility of collision.


2021 ◽  
Vol 2021 (3-4) ◽  
pp. 14-24
Author(s):  
Aleksandr Reutov

A computer dynamic model of an automobile transmission with a double dry clutch, created using the "Universal Mechanism" software package, is presented. Work objective is to analyze the possibility of improving double dry clutch efficiency at various controls of compressive forces of clutch plates. The computer model contains 7 bodies: an engine crankshaft, two clutch plates, two gearbox input shafts for odd and even gears, an output shaft, a fly wheel. The simulation of gear shifting shows that pressing a clutch pedal or letting out the clutch simultaneously, cutoff time increment increases the rotational speed justification of the engine shaft and the input shaft of the actual gear, the total work of the friction forces of both clutches and does not affect the maximum value of clutch plates rotary sliding resistance. Frictional energy of the clutch when shifting gears from lower to higher is greater than when shifting gears from higher to lower. Sequential clutch on-off reduces the total frictional energy of both clutches by 1.17...1.31 times compared to simultaneous one. The model allows looking into different gearshift modes with uniform velocity or accelerated vehicle motion, optimize the gearshift strategy.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7895
Author(s):  
Artur Ryguła ◽  
Andrzej Maczyński ◽  
Krzysztof Brzozowski ◽  
Marcin Grygierek ◽  
Aleksander Konior

This paper presents the analyses of the signals recorded by the main sensors of a WIM test station in the cases of abnormal runs (i.e., runs with the changes of trajectory or the dynamics of vehicle motion). The research involved strain gauges which are used for measuring the weight of vehicles, inductive loops, as well as piezoelectric sensors used, inter alia, to detect twin wheels and to determine where a vehicle passes through a station. Since the designers intend the station to be able to implement the direct enforcement function, the selection of runs deviating from the normative ones constitutes an important issue for the assessment of the measurement reliability. The study considered the location of the trajectory of the runs, the dynamics (acceleration/braking) and the trajectory changes. The change in the amplitude and the value of the signal recorded by the strain gauges as a function of the location (position) of the contact between sensor and tires is a noteworthy observation which indicates the need to monitor this parameter in automatic WIM systems. Other tests also demonstrated the influence of the analysed driving parameters on the recorded results. However, by equipping the WIM station with a set of duplicate strain gauges, the measurement errors of the gross weight and axle loads are normally within the accuracy limits of class A(5) stations. Only in the case of accelerating/decelerating, does the error in measuring the load of a single axle reach several per cent.


Sign in / Sign up

Export Citation Format

Share Document