Backward Monte Carlo Simulations in Radiative Heat Transfer

2003 ◽  
Vol 125 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Michael F. Modest

Standard Monte Carlo methods trace photon bundles in a forward direction, and may become extremely inefficient when radiation onto a small spot and/or onto a small direction cone is desired. Backward tracing of photon bundles is known to alleviate this problem if the source of radiation is large, but may also fail if the radiation source is collimated and/or very small. In this paper various implementations of the backward Monte Carlo method are discussed, allowing efficient Monte Carlo simulations for problems with arbitrary radiation sources, including small collimated beams, point sources, etc., in media of arbitrary optical thickness.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Tao Ren ◽  
Michael F. Modest

With today's computational capabilities, it has become possible to conduct line-by-line (LBL) accurate radiative heat transfer calculations in spectrally highly nongray combustion systems using the Monte Carlo method. In these calculations, wavenumbers carried by photon bundles must be determined in a statistically meaningful way. The wavenumbers for the emitting photons are found from a database, which tabulates wavenumber–random number relations for each species. In order to cover most conditions found in industrial practices, a database tabulating these relations for CO2, H2O, CO, CH4, C2H4, and soot is constructed to determine emission wavenumbers and absorption coefficients for mixtures at temperatures up to 3000 K and total pressures up to 80 bar. The accuracy of the database is tested by reconstructing absorption coefficient spectra from the tabulated database. One-dimensional test cases are used to validate the database against analytical LBL solutions. Sample calculations are also conducted for a luminous flame and a gas turbine combustion burner. The database is available from the author's website upon request.


Sign in / Sign up

Export Citation Format

Share Document