forward direction
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 121)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Shuangfei Yu ◽  
Yisheng Guan ◽  
Zhi Yang ◽  
Chutian Liu ◽  
Jiacheng Hu ◽  
...  

Abstract Most welding manufacturing of the heavy industry, such as shipbuilding and construction, is carried out in an unstructured workspace. The term Unstructured indicates the production environment is irregular, changeable and without model. In this case, the changeable workpiece position, workpiece shape, environmental background, and environmental illumination should be carefully considered. Because of such complicated characteristics, the welding is currently being relied on the manual operation, resulting in high cost, low efficiency and quality. This work proposes a portable robotic welding system and a novel seam tracking method. Compared to existing methods, it can cope with more complex general spatial curve weld. Firstly, the tracking pose of the robot is modeled by a proposed dual-sequence tracking strategy. On this basis, the working parameters can be adjusted to avoid robot-workpiece collision around the workpiece corners during the tracking process. By associating the forward direction of the welding torch with the viewpoint direction of the camera, it solves the problem that the weld feature points are prone to be lost in the tracking process by conventional methods. Point cloud registration is adopted to globally locate the multi-segment welds in the workpiece, since the system deployment location is not fixed. Various experiments on single or multiple welds under different environmental conditions show that even if the robot is deployed in different positions, it can reach the starting point of the weld smoothly and accurately track along the welds.


2022 ◽  
Vol 12 (1) ◽  
pp. 488
Author(s):  
Sébastien Garcia ◽  
Nicolas Delattre ◽  
Eric Berton ◽  
Guillaume Rao

Patellar tendinopathy is a chronic overuse injury of the patellar tendon which is prevalent in jump-landing activities. Sports activities can require jumping not only with a vertical component but also in a forward direction. It is yet unknown how jumping in the forward direction may affect patellar tendon forces. The main purpose of this study was to compare PTF between landings preceded by a vertical jump and a forward jump in volleyball players. The second purpose was to compare two different estimation methods of the patellar tendon force. Fifteen male volleyball players performed vertical and forward jump-landing tasks at a controlled jump height, while kinetics and kinematics were recorded. Patellar tendon forces were calculated through two estimation methods based on inverse dynamic and static optimization procedures, using a musculoskeletal model. Results showed that forward jump-landing generated higher patellar tendon forces compared to vertical jump-landing for both estimation methods. Surprisingly, although the static optimization method considered muscle co-contraction, the inverse kinematic method provided statistically significant higher patellar tendon force values. These findings highlight that limiting the forward velocity component of the aerial phase appears to reduce the load on the patellar tendon during landing and may help to prevent patellar tendinopathy.


2021 ◽  
Author(s):  
Alba Peris-Yague ◽  
Darya Frank ◽  
Bryan Andrew Strange

Conditional response probability (CRP) analyses applied to free recall data indicate that recall occurs for contiguous items with forward-directionality, thought to reflect the shared encoding context of nearby items. We hypothesized that a context disruption, produced by presenting infrequent oddballs, would modulate CRP curves, increasing the forward-flow of recall due to strong binding of items presented after these oddballs to the new encoding context. Seventy young, healthy male and female participants encoded word lists containing either emotional or perceptual oddballs at varying stimulus onset asynchronies (SOA) followed by free recall. Serial recall transitions from emotional, but not perceptual, oddballs were enhanced in the forward direction except at the shortest SOA (1s). The present results provide empirical evidence of CRP modulation selectively by emotional salience and suggest that recall patterns after presenting emotional and perceptual oddballs are mediated by different mechanisms.


2021 ◽  
Author(s):  
Heribert Wankerl ◽  
Christopher Wiesmann ◽  
Laura Kreiner ◽  
Rainer Butendeich ◽  
Alexander Luce ◽  
...  

Abstract Over the last decades, light-emitting diodes (LED) have replaced common light bulbs in almost every application, from flashlights in smartphones to automotive headlights. Illuminating nightly streets requires LEDs to emit a light spectrum that is perceived as pure white by the human eye. The power associated with such a white light spectrum is not only distributed over the contributing wavelengths but also over the angles of vision. For many applications, the usable light rays are required to exit the LED in forward direction, namely under small angles to the perpendicular. In this work, we demonstrate that a specifically designed multi-layer thin film on top of a white LED increases the power of pure white light emitted in forward direction. Therefore, the deduced multi-objective optimization problem is reformulated via a real-valued physics-guided objective function that represents the hierarchical structure of our engineering problem. Variants of Bayesian optimization are employed to maximize this non-deterministic objective function based on ray tracing simulations. Eventually, the investigation of optical properties of suitable multi-layer thin films allowed to identify the mechanism behind the increased directionality of white light: angle and wavelength selective filtering causes the multi-layer thin film to play ping pong with rays of light.


2021 ◽  
Author(s):  
Christoph von Ballmoos ◽  
Abbas Abou-Hamdan ◽  
Roman Mahler ◽  
Philipp Grossenbacher ◽  
Olivier Biner ◽  
...  

The superoxide anion - molecular oxygen reduced by a single electron - is produced in large amounts by enzymatic and adventitious reactions and can perform a range of cellular functions, including bacterial warfare and iron uptake, signalling and host immune response in eukaryotes. However, it also serves as precursor for more deleterious species such as the hydroxyl anion or peroxynitrite and therefore, cellular defense mechanisms for superoxide neutralization have evolved. In addition to the soluble proteins superoxide dismutase and superoxide reductase, recently the membrane embedded diheme cytochrome b561 (CybB) from E. coli has been proposed to act as a superoxide:quinone oxidoreductase. Here, we confirm superoxide and cellular ubiquinones or menaquinones as natural substrates and show that quinone binding to the enzyme accelerates the reaction with superoxide. The reactivity of the substrates is in accordance with the here determined midpoint potential of the two b hemes (+48 and -23 mV / NHE). Our data suggest that the enzyme can work near the diffusion limit in the forward direction and can also catalyse the reverse reaction efficiently under physiological conditions. The data is discussed in context of described cytochrome b561 proteins and potential physiological roles of CybB.


2021 ◽  
Vol 14 (12) ◽  
pp. 7673-7704
Author(s):  
Mark G. Flanner ◽  
Julian B. Arnheim ◽  
Joseph M. Cook ◽  
Cheng Dang ◽  
Cenlin He ◽  
...  

Abstract. The Snow, Ice, and Aerosol Radiative (SNICAR) model has been used in various capacities over the last 15 years to model the spectral albedo of snow with light-absorbing constituents (LACs). Recent studies have extended the model to include an adding-doubling two-stream solver and representations of non-spherical ice particles; carbon dioxide snow; snow algae; and new types of mineral dust, volcanic ash, and brown carbon. New options also exist for ice refractive indices and solar-zenith-angle-dependent surface spectral irradiances used to derive broadband albedo. The model spectral range was also extended deeper into the ultraviolet for studies of extraterrestrial and high-altitude cryospheric surfaces. Until now, however, these improvements and capabilities have not been merged into a unified code base. Here, we document the formulation and evaluation of the publicly available SNICAR-ADv3 source code, web-based model, and accompanying library of constituent optical properties. The use of non-spherical ice grains, which scatter less strongly into the forward direction, reduces the simulated albedo perturbations from LACs by ∼9 %–31 %, depending on which of the three available non-spherical shapes are applied. The model compares very well against measurements of snow albedo from seven studies, though key properties affecting snow albedo are not fully constrained with measurements, including ice effective grain size of the top sub-millimeter of the snowpack, mixing state of LACs with respect to ice grains, and site-specific LAC optical properties. The new default ice refractive indices produce extremely high pure snow albedo (>0.99) in the blue and ultraviolet part of the spectrum, with such values only measured in Antarctica so far. More work is needed particularly in the representation of snow algae, including experimental verification of how different pigment expressions and algal cell concentrations affect snow albedo. Representations and measurements of the influence of liquid water on spectral snow albedo are also needed.


2021 ◽  
Vol 13 (2) ◽  
pp. 42-47
Author(s):  
Eko Didik Widianto ◽  
M Ikhsan ◽  
Agung Budi Prasetijo

Various electronic travel aids for people having visual impairment have been developed based on ultrasonic object detection employing the HC-SR04 ultrasonic proximity sensor. However, most of them do not consider blind spots where harmful objects cannot be detected. This study discusses the development of a vest that can detect objects in front of the blinds more widely and provide sound alert if an object in front is detected. This detector was developed based on an Arduino Uno equipped with five HC-SR04 ultrasonic sensors, and a mini DFPlayer module. In addition, blind area analysis of sensor detection is carried out to overcome objects that are not detected by similar studies. Horizontally, this travel vest sweeps objects up to 150 cm in distance with a 25o right or left angle deviation from forward direction. Vertically, object detection reaches up to 150 cm in distance with both upward and downward deviation of 30o from the vest.


2021 ◽  
Author(s):  
Seigo Miyamoto ◽  
Shogo Nagahara ◽  
Kunihiro Morishima ◽  
Toshiyuki Nakano ◽  
Masato Koyama ◽  
...  

Abstract. One of the key challenges for muographic studies is to reveal the detailed 3D density structure of a volcano by increasing the number of observation directions. 3D density imaging by multi-directional muography requires that the individual differences in the performance of the installed muon detectors are small and that the results from each detector can be derived without any bias in the data analysis. Here we describe a pilot muographic study of the Izu–Omuroyama scoria cone in Shizuoka Prefecture, Japan, from 11 directions, using a new nuclear emulsion detector design optimized for quick installation in the field. We describe the details of the data analysis and present a validation of the results. The Izu–Omuroyama scoria cone is an ideal target for the first multi-directional muographic study, given its expected internal density structure and the topography around the cone. We optimized the design of the nuclear emulsion detector for rapid installation at multiple observation sites in the field, and installed these at 11 sites around the volcano. The images in the developed emulsion films were digitized into segmented tracks with a high-speed automated readout system. The muon tracks in each emulsion detector were then reconstructed. After the track selection, including straightness filtering, the detection efficiency of the muons was estimated. Finally, the density distributions in 2D angular space were derived for each observation site by using a muon flux and attenuation models. The observed muon flux was compared with the expected value in the free sky, and is 88 % ± 4 % in the forward direction and 92 % ± 2 % in the backward direction. The density values were validated by comparison with the values obtained from gravity measurements, and are broadly consistent, except for one site. The excess density at this one site may indicate that the density inside the cone is non-axisymmetric, which is consistent with a previous geological study.


Author(s):  
Сергей Петрович Баутин ◽  
Юрий Владимирович Николаев

Выполнено численное моделирование одномерных течений политропного газа, описывающее сжатие покоящегося газа с плотностью 1 в покоящийся газ, сжатый до значения 10. Описываемое сжатие происходит без ударных волн эффективным с точки зрения энерговложения способом, так как энергия тратится только на сжатие газа, но не на его разгон Controlled thermonuclear fusion (CTF) is an almost unlimited source of energy and scientists have been studying it for several decades. This requires an efficient and stable compression of diyterium-tritium fuel to a very high density. This work addresses shockless one-dimensional (plane, cylindrical and spherical symmetry cases) “compression from rest to rest”, when gas from the initial resting state under the influence of an impenetrable piston is shocklessly transferred to a resting homogeneous state, but compressed by 10000 times. This compression is energetically most advantageous, because work is spent only on the compression, but not on the gas acceleration. Earlier [10] this problem was solved in the opposite direction of time change. In this case, a density jump occurs on the piston which was taken into account in calculations [3] at the final moment of compression. The numerical solution of this problem in the opposite direction of time variation allows calculating the trajectory of the compressing piston in the form of a set of points ( t,r ) at which the gas velocity and density are determined. In this paper, the problem of shockless “compression from rest to rest” is numerically solved in the forward direction of time change if the compressing piston trajectory is known. The compression piston moves along a monotonous trajectory away from the axis or center of symmetry. It is important, when calculating in forward direction of time change, no internal characteristics are initially entered. They, like all gas flow in the calculation area, are determined in the process of direct calculation. This indicates that the trajectory of compressing piston is the recommendation for appropriate physical experiments


2021 ◽  
Vol 2086 (1) ◽  
pp. 012065
Author(s):  
S V Sedykh ◽  
S B Rybalka ◽  
A A Demidov ◽  
E A Kulchenkov

Abstract The forward and reverse current–voltage characteristics of Ti/Al/4H-SiC Schottky diode type DDSH411A91 in modern small-sized (SOT-89) type metal-polymeric package have been obtained. In forward direction (current up to 2 A) on the basis of analysis it is shown that Schottky diode corresponds to the "ideal" diode with ideality factor n=1.12 and effective Schottky barrier height φB =1.2 eV. It is shown that reverse current-voltage characteristics (breakdown voltage 1200 V) can be well approximated by mechanism of field dependence of barrier height lowering by the presence of the intermediate layer in the form of oxide on the 4H-SiC surface.


Sign in / Sign up

Export Citation Format

Share Document