Full Dynamic Analysis of Offshore Platform Structures Using Exact Timoshenko Pipe Element

2003 ◽  
Vol 125 (3) ◽  
pp. 168-175 ◽  
Author(s):  
A. M. Horr ◽  
M. Safi

One of the major divisions in the mathematical modeling of a tubular structure is to include the effect of the transverse shear stress and rotary inertia in vibration of members. During the past three decades, problems of vibration of tubular structures have been considered by some authors, and special attention has been devoted to the Timoshenko theory. There have been considerable efforts, also, to apply the method of spectral analysis to vibration of a structure with tubular section beams. The purpose of this paper is to compare the results of the improved complex spectral element method for the Timoshenko theory with those derived from the conventional finite element method for an offshore structure. Using a computer program, the proposed formulation has been extended to derive the dynamic response of an offshore platform structure under dynamic loads.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Dmitriy Konovalov ◽  
Anatoly Vershinin ◽  
Konstantin Zingerman ◽  
Vladimir Levin

Modern high-performance computing systems allow us to explore and implement new technologies and mathematical modeling algorithms into industrial software systems of engineering analysis. For a long time the finite element method (FEM) was considered as the basic approach to mathematical simulation of elasticity theory problems; it provided the problems solution within an engineering error. However, modern high-tech equipment allows us to implement design solutions with a high enough accuracy, which requires more sophisticated approaches within the mathematical simulation of elasticity problems in industrial packages of engineering analysis. One of such approaches is the spectral element method (SEM). The implementation of SEM in a CAE system for the solution of elasticity problems is considered. An important feature of the proposed variant of SEM implementation is a support of hybrid curvilinear meshes. The main advantages of SEM over the FEM are discussed. The shape functions for different classes of spectral elements are written. Some results of computations are given for model problems that have analytical solutions. The results show the better accuracy of SEM in comparison with FEM for the same meshes.


2013 ◽  
Vol 86 ◽  
pp. 210-227 ◽  
Author(s):  
Christoph Bosshard ◽  
Abdelouahab Dehbi ◽  
Michel Deville ◽  
Emmanuel Leriche ◽  
Riccardo Puragliesi ◽  
...  

2017 ◽  
Vol 48 ◽  
pp. 1-20 ◽  
Author(s):  
Antonio Cerrato ◽  
Luis Rodríguez-Tembleque ◽  
José A. González ◽  
M.H. Ferri Aliabadi

Sign in / Sign up

Export Citation Format

Share Document