A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective

2005 ◽  
Vol 127 (1) ◽  
pp. 5-13 ◽  
Author(s):  
J. H. Horlock ◽  
J. D. Denton

In the early development of gas turbines, many empirical design rules were used; for example in obtaining fluid deflection using the deviation from blading angles, in the assumption of zero radial velocities (so-called radial equilibrium) and in expressions for clearance loss (the Lakshminarayana formulas). The validity of some of these rules, and the basic fluid mechanics behind them, is examined by use of modern ideas and computational fluid dynamics (CFD) codes. A current perspective of CFD in design is given, together with a view on future developments.

Author(s):  
J. H. Horlock ◽  
J. D. Denton

In the early development of gas turbines, many empirical design rules were used; for example in obtaining fluid deflection using the deviation from blading angles, in the assumption of zero radial velocities (so-called radial equilibrium) and in expressions for clearance loss (the Lakshminarayana formulae). The validity of some of these rules, and the basic fluid mechanics behind them, is examined by use of modern ideas and CFD codes. A current perspective of CFD in design is given, together with a view on future developments.


2005 ◽  
Vol 128 (1) ◽  
pp. 120-129 ◽  
Author(s):  
N. A. Cumpsty ◽  
J. H. Horlock

Averaging nonuniform flow is important for the analysis of measurements in turbomachinery and gas turbines; more recently an important need for averaging arises with results of computational fluid dynamics (CFD). In this paper we show that there is a method for averaging which is “correct,” in the sense of preserving the essential features of the nonuniform flow, but that the type of averaging which is appropriate depends on the application considered. The crucial feature is the decision to retain or conserve those quantities which are most important in the case considered. Examples are given to demonstrate the appropriate methods to average nonuniform flows in the accounting for turbomachinery blade row performance, production of thrust in a nozzle, and mass flow capacity in a choked turbine. It is also shown that the numerical differences for different types of averaging are, in many cases, remarkably small.


1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


2021 ◽  
Vol 54 ◽  
pp. 102207
Author(s):  
Cristian Inostroza ◽  
Alessandro Solimeno ◽  
Joan García ◽  
José M. Fernández-Sevilla ◽  
F. Gabriel Acién

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 332
Author(s):  
Hong Yong Sohn ◽  
De-Qiu Fan ◽  
Amr Abdelghany

The development of a novel ironmaking technology based on fine iron ore concentrate in a flash reactor is summarized. The design of potential industrial reactors for flash ironmaking based on the computational fluid dynamics technique is described. Overall, this simulation work has shown that the size of the reactor used in the novel flash ironmaking technology (FIT) can be quite reasonable vis-à-vis the blast furnaces. A flash reactor of 12 m diameter and 35 m height with a single burner operating at atmospheric pressure would produce 1.0 million tons of iron per year. The height can be further reduced by either using multiple burners, preheating the feed gas, or both. The computational fluid dynamics (CFD)-based design of potential industrial reactors for flash ironmaking pointed to a number of features that should be incorporated. The flow field should be designed in such a way that a larger portion of the reactor is used for the reduction reaction but at the same time excessive collision of particles with the wall must be avoided. Further, a large diameter-to-height ratio that still allows a high reduction degree should be used from the viewpoint of decreased heat loss. This may require the incorporation of multiple burners and solid feeding ports.


Sign in / Sign up

Export Citation Format

Share Document