AMPS-An Automated Modular Process Planning System

2004 ◽  
Vol 4 (3) ◽  
pp. 235-241 ◽  
Author(s):  
Kenneth Castelino ◽  
V. Sundararajan ◽  
Roshan D’Souza ◽  
Balaji Kannan ◽  
Paul. K. Wright

AMPS is a fully automated process planning system for milling of 2.5D parts. It consists of different modules, each of which performs specific tasks like identification of removal volumes, setup and fixture planning, tool selection and tool path planning. This article focuses on the architecture of the planning system, the integration of the different modules and the interfaces needed for smooth flow of information between these modules. Current computer aided process planning (CAPP) practices were considered while defining interfaces so that these modules can be easily integrated into a commercial CAPP system.

Author(s):  
V. Sundararajan ◽  
Paul K. Wright

Agile methods of software development promote the use of flexible architectures that can be rapidly refactored and rebuilt as necessary for the project. In the mechanical engineering domain, software tends to be very complex and requires the integration of several modules that result from the efforts of large numbers of programmers over several years. Such software needs to be extensible, modular, and adaptable so that a variety of algorithms can be quickly tested and deployed. This paper presents an application of the unified process (UP) to the development of a research process planning system called CyberCut. UP is used to (1) analyze and critique early versions of CyberCut and (2) to guide current and future developments of the CyberCut system. CyberCut is an integrated process planning system that converts user designs to instructions for a computer numerical control (CNC) milling machine. The conversion process involves algorithms to perform tasks such as feature extraction, fixture planning, tool selection, and tool-path planning. The UP-driven approach to the development of CyberCut involves two phases. The inception phase outlines a clear but incomplete description of the user needs. The elaboration phase involves iterative design, development, and testing using short cycles. The software makes substantial use of design patterns to promote clean and well-defined separation between and within components to enable independent development and testing. The overall development of the software tool took about two months with five programmers. It was later possible to easily integrate or substitute new algorithms into the system so that programming resources were more productively used to develop new algorithms. The experience with UP shows that methodologies such as UP are important for engineering software development where research goals, technology, algorithms, and implementations show dramatic and frequent changes.


2013 ◽  
Vol 416-417 ◽  
pp. 919-924
Author(s):  
Hong Xia Yang ◽  
Wei Dong Chen ◽  
Hua Sheng Feng

With the rapid development of modern science and technology and computer technique, modern enterprise faces new challenges for product design, production, management, market planning and sales. The products of enterprises develop towards diversification, serialization and individualization. Technological design is important in product manufacturing process and is a bond of product design and actual production. Therefore, modern enterprises need to develop computer aided process planning system to improve the quality and efficiency of process design of the enterprise. Starting from the requirements of enterprises on computer aided process planning systems and combining the existing Web technology, the paper proposes the study on integration of computer aided process planning system and PDM system. The development and application of the system not only provides strong support for enterprises realizing rapid design and manufacture and strong basis for enterprises realizing computer integrated manufacturing system, but also makes informationization degree, economic benefit and social benefit of enterprises improve greatly.


1993 ◽  
Vol 1993 (173) ◽  
pp. 409-419 ◽  
Author(s):  
Yukio Ueda ◽  
Hidekazu Murakawa ◽  
Rashwan Ahmed Mohamed ◽  
Isao Neki ◽  
Ryoichi Kamichika ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document