Stability of Taylor–Couette Magnetoconvection With Radial Temperature Gradient and Constant Heat Flux at the Outer Cylinder

2006 ◽  
Vol 129 (3) ◽  
pp. 302-310 ◽  
Author(s):  
R. K. Deka ◽  
A. S. Gupta

An analysis is made of the linear stability of wide-gap hydromagnetic (MHD) dissipative Couette flow of an incompressible electrically conducting fluid between two rotating concentric circular cylinders in the presence of a uniform axial magnetic field. A constant heat flux is applied at the outer cylinder and the inner cylinder is kept at a constant temperature. Both types of boundary conditions viz; perfectly electrically conducting and electrically nonconducting walls are examined. The three cases of μ<0 (counter-rotating), μ>0 (co-rotating), and μ=0 (stationary outer cylinder) are considered. Assuming very small magnetic Prandtl number Pm, the wide-gap perturbation equations are derived and solved by a direct numerical procedure. It is found that for given values of the radius ratio η and the heat flux parameter N, the critical Taylor number Tc at the onset of instability increases with increase in Hartmann number Q for both conducting and nonconducting walls thus establishing the stabilizing influence of the magnetic field. Further it is found that insulating walls are more destabilizing than the conducting walls. It is observed that for given values of η and Q, the critical Taylor number Tc decreases with increase in N. The analysis further reveals that for μ=0 and perfectly conducting walls, the critical wave number ac is not a monotonic function of Q but first increases, reaches a maximum and then decreases with further increase in Q. It is also observed that while ac is a monotonic decreasing function of μ for N=0, in the presence of heat flux (N=1), ac has a maximum at a negative value of μ (counter-rotating cylinders).

2005 ◽  
Vol 32 (4) ◽  
pp. 359-384 ◽  
Author(s):  
R.K. Deka

A linear stability analysis has been presented for hydromagnetic dissipative Couette flow, a viscous electrically conducting fluid between rotating concentric cylinders in the presence of a uniform axial magnetic field and constant heat flux at the outer cylinder. The narrow-gap equations with respect to axisymmetric disturbances are derived and solved by a direct numerical procedure. Both types of boundary conditions, conducting and non-conducting walls are considered. A parametric study covering on the basis of ?, the ratio of the angular velocity of the outer cylinder to that of inner cylinder, Q, the Hartmann number which represents the strength of the axial magnetic field, and N, the ratio of the Rayleigh number and Taylor number representing the supply of heat to the outer cylinder at constant rate is presented. The three cases of ? < 0 (counter rotating), ? > 0 (co-rotating) and ? = 0 (stationary outer cylinder) are considered wherein the magnetic Prandtl number is assumed to be small. Results show that the stability characteristics depend mainly on the conductivity on the cylinders and not on the heat supplied to the outer cylinder. As a departure from earlier results corresponding to isothermal as well as hydromagnetic flow, it is found that the critical wave number is strictly a monotonic decreasing function of Q for conducting walls. Also, the presence of constant heat flux leads to a fall in the critical wave number for counter rotating cylinders, which states that for large values of -?, there occur transition from axisymmetric to non-axisymmetric disturbance whether the flow is hydrodynamic or hydromagnetic and this transition from axisymmetric to non-axisymmetric disturbance occur earlier as the strength of the magnetic field increases.


1998 ◽  
Vol 76 (5) ◽  
pp. 391-401
Author(s):  
MES Ahmed ◽  
H A Attia

The steady laminar flow and heat transfer of an incompressible, electrically conducting, non-Newtonian fluid in an eccentric annulus are studied in the presence of an external uniform magnetic field. The inner cylinder is subject to a constant heat flux while the outer cylinder is adiabatic and the viscous and Joule dissipations are taken into consideration. A numerical solution for the governing partial differential equations is developed and the influence of the magnetic field on both the velocity and temperature distributions are discussed.PACS Nos.: 47.65, 47.50, 47.15C


Author(s):  
G. Tomita ◽  
M. Kaneda ◽  
T. Tagawa ◽  
H. Ozoe

Three-dimensional numerical computations were carried out for the natural convection of air in a horizontal cylindrical enclosure in a magnetic field, which is modeled for a bore space of a horizontal superconducting magnet. The enclosure was cooled from the circumferential sidewall at the constant heat flux and vertical end walls were thermally insulated. A strong magnetic field was considered by a one-turn electric coil with the concentric and twice diameter of the cylinder. Without a magnetic field, natural convection occurs along the circumferential sidewall. When a magnetic field was applied, magnetizing force induced the additional convection, that is, the cooled air at the circumferential wall was attracted to the location of a coil. Consequently, the temperature around the coil decreased extensively.


Sign in / Sign up

Export Citation Format

Share Document