marangoni convection
Recently Published Documents


TOTAL DOCUMENTS

970
(FIVE YEARS 152)

H-INDEX

42
(FIVE YEARS 6)

Author(s):  
M. Ijaz Khan ◽  
M. Y. Malik ◽  
Faryal Chaudhry ◽  
Sami Ullah Khan ◽  
Essam Roshdy El-Zahar

2021 ◽  
Vol 11 (24) ◽  
pp. 12029
Author(s):  
Ruxue Liu ◽  
Xinru Yang ◽  
Jiayin Xie ◽  
Xiaoyu Li ◽  
Yongsheng Zhao

Steam injection is an effective technique for the remediation of aquifers polluted with volatile organic compounds. However, the application of steam injection technology requires a judicious selection of stratum media because the remediation effect of hot steam in heterogeneous layers with low permeability is not suitable. In this study, the removal effect of nitrobenzene in an aquifer was investigated through a series of two-dimensional sandbox experiments with different stratigraphic structures. Four types of alcohols were used during steam injection remediation to enhance the removal effect of nitrobenzene (NB)-contaminated heterogeneous aquifers. The principle of the removal mechanism of alcohol-enhanced organic compounds is that alcohols can reduce the surface tension of the contaminated water, resulting in Marangoni convection, thereby enhancing mass and heat transfer. The addition of alcohol may also reduce the azeotropic temperature of the system and enhance the volatility of organic compounds. The study revealed that all four alcohol types could reduce the surface tension from 72 mN/m to <30 mN/m. However, among these, only ethanol reduced the azeotropic temperature of NB by 15 °C, thereby reducing energy consumption and remediation costs. Therefore, ethanol was selected as an enhancing agent to reduce both surface tension and azeotropic temperature during steam injection. In the 2-D simulation tank, the interface between the low-and high-permeability strata in the layered heterogeneous aquifer had a blocking effect on steam transportation, which in turn caused a poor remediation effect in the upper low-permeability stratum. In the lens heterogeneous aquifer, steam flows around the lens, thereby weakening the remediation effect. After adding ethanol to the low-permeability zone, Marangoni convection was enhanced, which further enhanced the mass and heat transfer. In the layered and lens heterogeneous aquifers, the area affected by steam increased by 13% and 14%, respectively. Moreover, the average concentration of NB was reduced by 51% in layered heterogeneous aquifers and by 58% in low-permeability lenses by ethanol addition. These findings enhance the remediation effect of steam injection in heterogeneous porous media and contribute to improve the remediation efficiency of heterogeneous aquifers by steam injection.


2021 ◽  
Vol 11 (24) ◽  
pp. 11609
Author(s):  
Mahanthesh Basavarajappa ◽  
Giulio Lorenzini ◽  
Srikantha Narasimhamurthy ◽  
Ashwag Albakri ◽  
Taseer Muhammad

The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1492
Author(s):  
Muhammad Shoaib ◽  
Rafia Tabassum ◽  
Kottakkaran Sooppy Nisar ◽  
Muhammad Asif Zahoor Raja ◽  
Ayesha Rafiq ◽  
...  

Artificial intelligence applications based on soft computing and machine learning algorithms have recently become the focus of researchers’ attention due to their robustness, precise modeling, simulation, and efficient assessment. The presented work aims to provide an innovative application of Levenberg Marquardt Technique with Artificial Back Propagated Neural Networks (LMT-ABPNN) to examine the entropy generation in Marangoni convection Magnetohydrodynamic Second Grade Fluidic flow model (MHD-SGFM) with Joule heating and dissipation impact. The PDEs describing MHD-SGFM are reduced into ODEs by appropriate transformation. The dataset is determined through Homotopy Analysis Method by the variation of physical parameters for all scenarios of proposed LMT-ABPNN. The reference data samples for training/validation/testing processes are utilized as targets to determine the approximated solution of proposed LMT-ABPNN. The performance of LMT-ABPNN is validated by MSE based fitness, error histogram scrutiny, and regression analysis. Furthermore, the influence of pertinent parameters on temperature, concentration, velocity, entropy generation, and Bejan number is also deliberated. The study reveals that the larger β and Ma, the higher f′(η) while M has the reverse influence on f′(η). For higher values of β, M, Ma, and Ec, θ(η) boosts. The concentration ϕ(η) drops as Ma and Sc grow. An augmentation is noticed for NG for higher estimations of β,M, and Br. Larger β,M and Br decays the Bejan number.


Author(s):  
Mohammad Amin Kazemi ◽  
Sepehr Saber ◽  
Janet A.W. Elliott ◽  
David S. Nobes

2021 ◽  
pp. 4039-4055
Author(s):  
N. Manjunatha ◽  
R. Sumithra

The problem of non-Darcian-Bènard double diffusive magneto-Marangoni convection   is considered in a horizontal infinite two layer system. The system consists of a two-component fluid layer placed above a porous layer, saturated with the same fluid with a constant heat sources/sink in both the layers, in the presence of a vertical magnetic field.   The lower porous layer is bounded by rigid boundary, while the upper boundary of the fluid region is free with the presence of Marangoni effects.  The system of ordinary differential equations obtained after normal mode analysis is solved in a closed form for the eigenvalue and the Thermal Marangoni Number (TMN) for two cases of Thermal Boundary Combinations (TBC); these are type (i) Adiabatic-Adiabatic and type (ii) Adiabatic-Isothermal.  The corresponding two TMNs   are obtained and the impacts of the porous parameter, solute Marangoni number, modified internal Rayleigh numbers, viscosity ratio, and the diffusivity ratios on the non-Darcian-Bènard double diffusive magneto - Marangoni convection are studied in detail.


2021 ◽  
Author(s):  
Noor Wali Khan ◽  
Arshad Khan ◽  
Muhammad Usman ◽  
Taza Gul ◽  
Abir Mouldi ◽  
...  

Abstract The investigations about thin-film flow play a vital role in the field of optoelectronics and magnetic devices. Thin films are reasonably hard and thermally stable but are more fragile. The thermal stability of thin film can be further improved by incorporating the effects of nanoparticles. In the current work, a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account. The idea of augmenting heat transmission is focused in current work by making use of hybrid nanofluid. The flow is affected by variations in the viscous forces along with viscous dissipation effects and Marangoni convection. A time-constrained magnetic field is applied in the normal direction to the flow system. The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables. The homotopy analysis method (HAM) has been employed to find the solution of resultant equations. It has been noticed in this study that, the flow characteristics decline with augmentation in magnetic, viscosity, and unsteadiness parameters while grow up with enhancing values of thin-film parameter. Thermal characteristics are supported by the growing values of the Eckert number and unsteadiness parameter while opposed by the viscosity parameter and Prandtl number. The numerical impact of different emerging parameters upon skin friction and Nusselt number has been calculated in tabular form. A comparison of current work with established result has carried out with a good agreement in both results.


Sign in / Sign up

Export Citation Format

Share Document