Phase-Averaged Wall Shear Stress, Wall Pressure, and Near-Wall Velocity Field Measurements in a Whirling Annular Seal

1996 ◽  
Vol 118 (3) ◽  
pp. 590-597
Author(s):  
G. L. Morrison ◽  
R. B. Winslow ◽  
H. D. Thames

The flow field inside a 50 percent eccentric whirling annular seal operating at a Reynolds number of 24,000 and a Taylor number of 6600 has been measured using a three-dimensional laser-Doppler anemometer system. Flush mount pressure and wall shear stress probes have been used to measure the stresses (normal and shear) along the length of the stator. The rotor was mounted eccentrically on the shaft so that the rotor orbit was circular and rotated at the same speed as the shaft (a whirl ratio of 1.0). This paper presents mean pressure, mean wall shear stress magnitude, and mean wall shear stress direction distributions along the length of the seal. Phase-averaged wall pressure and wall shear stress are presented along with phase-averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall, where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure, and wall shear stress are very complex and do not follow simple bulk flow predictions.

Author(s):  
Gerald L. Morrison ◽  
Robert B. Winslow ◽  
H. Davis Thames

The flow field inside a 50% eccentric whirling annular seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Flush mount pressure and wall shear stress probes have been used to measure the stresses (normal and shear) along the length of the stator. The rotor was mounted eccentrically on the shaft so that the rotor orbit was circular and rotated at the same speed as the shaft (a whirl ratio of 1.0). This paper presents mean pressure, mean wall shear stress magnitude and mean wall shear stress direction distributions along the length of the seal. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.


Circulation ◽  
2014 ◽  
Vol 129 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Riti Mahadevia ◽  
Alex J. Barker ◽  
Susanne Schnell ◽  
Pegah Entezari ◽  
Preeti Kansal ◽  
...  

Author(s):  
Leonie Rouleau ◽  
Joanna Rossi ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells (ECs) are believed to respond differentially to hemodynamic forces in the vascular tree. Once atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress (WSS). In vitro models have used mostly unrealistic and simplified geometries, which cannot reproduce accurately physiological conditions. The objective of this study was to expose ECs to the complex WSS pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flows in straight dynamic controls and in idealized asymmetric stenosis models. Cell morphology was noticeably different in the regions with spatial WSS gradients, being more randomly oriented and of cobblestone shape. Inflammatory molecule expression was also altered by exposure to shear and endothelial nitric oxide synthase (eNOS) was upregulated by its presence. A regional response in terms of inflammation was observed through confocal microscopy. This work provides a more realistic model to study endothelial cell response to spatial and temporal WSS gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


2019 ◽  
Vol 31 (12) ◽  
pp. 121903 ◽  
Author(s):  
Christopher Cox ◽  
Mohammad Reza Najjari ◽  
Michael W. Plesniak

2009 ◽  
Vol 7 (42) ◽  
pp. 91-103 ◽  
Author(s):  
C. Poelma ◽  
K. Van der Heiden ◽  
B. P. Hierck ◽  
R. E. Poelmann ◽  
J. Westerweel

In order to study the role of blood–tissue interaction in the developing chicken embryo heart, detailed information about the haemodynamic forces is needed. In this study, we present the first in vivo measurements of the three-dimensional distribution of wall shear stress (WSS) in the outflow tract (OFT) of an embryonic chicken heart. The data are obtained in a two-step process: first, the three-dimensional flow fields are measured during the cardiac cycle using scanning microscopic particle image velocimetry; second, the location of the wall and the WSS are determined by post-processing flow velocity data (finding velocity gradients at locations where the flow approaches zero). The results are a three-dimensional reconstruction of the geometry, with a spatial resolution of 15–20 µm, and provides detailed information about the WSS in the OFT. The most significant error is the location of the wall, which results in an estimate of the uncertainty in the WSS values of 20 per cent.


1982 ◽  
Vol 104 (2) ◽  
pp. 150-155 ◽  
Author(s):  
J. E. McAllister ◽  
F. J. Pierce ◽  
M. H. Tennant

Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.


Sign in / Sign up

Export Citation Format

Share Document