velocity turbulence
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Xiang Zhang ◽  
Yinghou Jiao ◽  
Xiuquan Qu ◽  
Guanghe Huo ◽  
Zhiqian Zhao

The seal is designed to reduce leakage and improve the efficiency of gas turbine machines, and is an important technology that needs to be studied in gas turbine design. A series of seals were proposed to try to achieve this goal. However, due to the complex fluid dynamic performance of the seal-rotor system, the seal structure can obtain both the best leakage performance and best rotordynamic performance. This paper presents a detailed flow analysis of the hole diaphragm labyrinth seal (HDLS) at several whirl frequencies and several rotation speeds. The pressure drop, velocity, turbulence kinetic energy and leakage performance of the HDLS were discussed by simulations. An interesting exponential–type relationship between rotation speeds and leakage flow at different whirl frequencies was observed by curve fitting technology. A reverse flow rate was proposed to describe such an unusual phenomenon. Such a relationship can be used to further establish the leakage model of the HDLS and other similar seals.


Author(s):  
Rakesh Kumar Chaudhary ◽  
Zulfequar Ahmad ◽  
Surendra Kumar Mishra

Abstract Experiments were performed over smooth and corrugated aprons with different corrugation dimensions to study the scour and flow characteristics under submerged wall jets condition. The scour depth and length are significantly lower for corrugated than smooth rigid aprons. The maximum reductions in scour depth and length are 79 and 83%, respectively. Optimum scour depth and length are found for aspect ratio (ratio of corrugation wave length to amplitude) three for corrugated apron. The factors affecting scour depth and length were analyzed graphically, and empirical equations are proposed for predicting maximum scour depth and length, and the point of maximum scour depth for corrugated aprons. Velocity, turbulence characteristics, and Reynolds stress in scour holes for smooth and corrugated aprons were also studied. HIGHLIGHT This paper presents the scour downstream of corrugated apron and flow characteristics under submerged wall jets. Here scour depth and length reduces significantly than other apron. In this we have tried to develop empirical equation on single size sediment considering all the flow parameter and apron parameter. Besides this we have also conducted study related to turbulence and shear stress and velocity vector profile.


Author(s):  
Sandip Saha ◽  
Pankaj Biswas ◽  
Apurba Narayan Das

In presence of baffle, the turbulent airflow phenomena as well as forced convective heat exchange characteristics in two-dimensional rectangular channel have been analyzed in this work. For variations in Reynolds number (Re), we have studied the variations in characteristics of thermal behavior due to the change in the shape of baffle. Computations have been done using finite volume method (FVM) and FLUENT software and the SIMPLE algorithm has been employed for solving the governing equations. Finally, the flow and thermal exchange characteristics viz., streamline flow, turbulence intensity (TE), axial velocity, turbulence kinetic energy (TKE), normalized friction factor (F), normalized average Nusselt number (Nuavg) and thermal enhancement factor (TEF) have been studied in details from numerical standpoint. It has been found that the triangular shaped baffle provides highest value of F at Re = 30,000 and at Re = 46, 000, the maximum value of the TEF is found for the same baffle implying that triangular shaped baffle is more suitable for overall purposes.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2253
Author(s):  
Zecan Tu ◽  
Daniela Piccioni Koch ◽  
Nenad Sarunac ◽  
Martin Frank ◽  
Junkui Mao

The heat transfer performance of a solar external receiver tube with guide vanes was numerically studied under non-uniform heat flux conditions. Models of the smooth tube and the tube with guide vanes were built. The distributions of the temperature, velocity, turbulence intensity, and Nu predicted by these two models were compared to investigate the heat transfer enhancement and the mixing effect of the guide vanes. The effect of the Re and the α on the heat transfer enhancement was also studied. The results show that the guide vanes form spiraling flows, reduce the maximum tube and molten salt temperatures, and improve the heat transfer. In addition, a more uniform temperature distribution is achieved compared to the smooth tube, allowing the molten salt to work safely under higher heat flux conditions in the receiver tube with guide vanes. It was observed that a larger Re enhances the heat transfer on the tube wall and achieves a longer effective distance of enhanced heat transfer in the downstream region, while the spiraling flow, the heat transfer enhancement, and the mixing are stronger for a larger α.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 86 ◽  
Author(s):  
Jaan H. Pu

When using point measurement for environmental or sediment laden flows, there is well-recognised risk for not having aligned measurements that causes misinterpretation of the measured velocity data. In reality, these kinds of mismeasurement mainly happen due to the misinterpretation of bed orientation caused by the complexity of its determination in natural flows, especially in bedload laden or rough bed flows. This study proposes a novel bed realignment method to improve the measured data benchmarking by three-dimensional (3D) bed profile orientation and implemented it into different sets of experimental data. More specifically, the effects of realignment on velocity profile and streamwise turbulence structure measurements were investigated. The proposed technique was tested against experimental data collected over a water-worked and an experimentally arranged well-packed beds. Different from the well-packed rough bed, the water-worked bed has been generated after long sediment transport and settling and hence can be used to verify the proposed bed-alignment technique thoroughly. During the flow analysis, the corrected velocity, turbulence intensity and Reynolds stress profiles were compared to the theoretical logarithmic law, exponential law and linear gravity (universal Reynolds stress distribution) profiles, respectively. It has been observed that the proposed method has improved the agreement of the measured velocity and turbulence structure data with their actual theoretical profiles, particularly in the near-bed region (where the ratio of the flow measurement vertical distance to the total water depth, z/h, is limited to ≤0.4).


2020 ◽  
Author(s):  
Andrew P. J. Stanley ◽  
Jennifer King ◽  
Christopher Bay ◽  
Andrew Ning

Abstract. Wind turbines in wind farms often operate in waked or partially waked conditions, which can greatly increase the fatigue damage. Some fatigue considerations may be included, but currently a full fidelity analysis of the increased damage a turbine experiences in a wind farm is not considered in wind farm layout optimization because existing models are too computationally expensive. In this paper, we present a model to calculate fatigue damage caused by partial waking on a wind turbine that is computationally efficient and can be included in wind farm layout optimization. The model relies on analytic velocity, turbulence, and loads models commonly used in farm research and design, and captures some of the effects of turbulence on the fatigue loading. Compared to high-fidelity simulation data, our model accurately predicts the damage trends of various waking conditions. We also perform example wind farm layout optimizations with our presented model in which we maximize the annual energy production (AEP) of a wind farm while constraining the damage of the turbines in the farm. The results of our optimization show that the turbine damage can be significantly reduced, more than 10 %, with only a small sacrifice of around 0.07 % to the AEP, or the damage can be reduced by 20 % with an AEP sacrifice of 0.6 %.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1688
Author(s):  
Imre Csáky

Using the personal ventilation systems may improve the thermal comfort sensation. At the University of Debrecen, a personal ventilation system was developed named ALTAIR. This paper presents the results of mean air velocity, turbulence grade, and draught measurements related to newly developed air terminal devices which are connected to the ALTAIR personal ventilation system. In order to define the measurement points it was essential to test the new air terminal devices (ATDs) in front of a black wall and smoke puffs. A series of measurements were carried out with isothermal air flow, mean air velocity, turbulence grade, and draught around the occupant head region in order to improve the thermal comfort sensation. Five different ATDs were analyzed.


2019 ◽  
Vol 29 (10) ◽  
pp. 1425-1440 ◽  
Author(s):  
Huan Wang ◽  
Maohui Luo ◽  
Guijin Wang ◽  
Xianting Li

Ceiling fans have been widely used as effective cooling and air mixing method for building environment conditioning. Understanding its airflow characteristics can be helpful to utilize ceiling fan or integrate it with background air conditioning system. However, the airflow induced by ceiling fan has different flow patterns under different rotating speeds and blowing directions. To date, it is still challenging to capture those complicated airflow fields in room scale. In this study, the airflow pattern induced by a ceiling fan was measured with a new technology, quad-view colour sequence particle streak velocimetry. A series of isothermal experiments were conducted under five rotation speed levels with downward and upward blowing directions in a room-size (4 m × 2.5 m × 3 m) chamber. Based on comprehensive three-dimensional three-component vector measurement results, the average velocity, turbulence intensity and vorticity on the middle section were calculated and used to analyse airflow patterns induced by ceiling fan. The results show that the blowing direction of the fan determines the indoor airflow pattern. When blowing downward, the flow will cause high diversion between jet core under the fan blades and surrounding region. While for upward blowing, the air speed in lower part of the room is much lower but pretty uniform. The detailed measured airflow fields can serve as reference for ceiling fan design and operation.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 169
Author(s):  
Arman Ameen ◽  
Gasper Choonya ◽  
Mathias Cehlin

An experimental study was conducted in a room resembling an office in a laboratory environment. The study involved investigating the ability of corner-placed stratum ventilation in order to evaluate the ventilation’s effectiveness and local thermal comfort. At fixed positions, the air temperature, air velocity, turbulence intensity, and tracer gas decay measurements were carried out. The results show that corner-placed stratum ventilation behaves very similar to a mixing ventilation system when considering air change effectiveness. The performance of the system was better at lower supply air flow rates for heat removal effectiveness. For the heating cases, the draught rates were all very low, with the maximum measured value of 12%. However, for the cooling cases, the maximum draught rate was 20% and occurred at ankle level in the middle of the room.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1354 ◽  
Author(s):  
Arman Ameen ◽  
Mathias Cehlin ◽  
Ulf Larsson ◽  
Taghi Karimipanah

The performance of a newly designed corner impinging jet air distribution method with an equilateral triangle cross section was evaluated experimentally and compared to that of two more traditional methods (mixing and displacement ventilation). At nine evenly chosen positions with four standard vertical points, air velocity, turbulence intensity, temperature, and tracer gas decay measurements were conducted for all systems. The results show that the new method behaves as a displacement ventilation system, with high air change effectiveness and stratified flow pattern and temperature field. Both local air change effectiveness and air exchange effectiveness of the corner impinging jet showed high quality and promising results, which is a good indicator of ventilation effectiveness. The results also indicate that there is a possibility to slightly lower the airflow rates for the new air distribution system, while still meeting the requirements for thermal comfort and indoor air quality, thereby reducing fan energy usage. The draught rate was also lower for corner impinging jet compared to the other tested air distribution methods. The findings of this research show that the corner impinging jet method can be used for office ventilation.


Sign in / Sign up

Export Citation Format

Share Document