scholarly journals Publisher's Note: Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation [Phys. Rev. Fluids 1 , 024404 (2016)]

2017 ◽  
Vol 2 (4) ◽  
Author(s):  
George Ilhwan Park ◽  
Parviz Moin
Author(s):  
L. D. Browne ◽  
P. Griffin ◽  
M. T. Walsh

Hemodialysis patients require a vascular access capable of accommodating the high blood flow rates required for effective dialysis treatment. The arteriovenous graft is one such access. However, this access type suffers from reduced one year primary & secondary patency rates of 59–90% and 50–82% respectively [1]. The main contributor to the failure of this access is stenosis via the development of intimal hyperplasia (IH) that predominately occurs at the venous anastomosis. It is hypothesized that the resulting transitional to turbulent flow regime within the venous anastomosis contributes to the development of IH. The aim of this study is to investigate the influence of this transitional to turbulent behavior on wall shear stress within the venous anastomosis via the use of large eddy simulation.


Author(s):  
Soshi Kawai

This paper addresses the error in large-eddy simulation with wall-modeling (i.e., when the wall shear stress is modeled and the viscous near-wall layer is not resolved): the error in estimating the wall shear stress from a given outer-layer velocity field using auxiliary near-wall RANS equations where convection is not neglected. By considering the behavior of turbulence length scales near a wall, the cause of the errors is diagnosed and solutions that remove the errors are proposed based solidly on physical reasoning. The resulting method is shown to accurately predict equilibrium boundary layers at very high Reynolds number, with both realistic instantaneous fields (without overly elongated unphysical near-wall structures) and accurate statistics (both skin friction and turbulence quantities).


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Roland Gårdhagen ◽  
Jonas Lantz ◽  
Fredrik Carlsson ◽  
Matts Karlsson

Large eddy simulation was applied for flow of Re=2000 in a stenosed pipe in order to undertake a thorough investigation of the wall shear stress (WSS) in turbulent flow. A decomposition of the WSS into time averaged and fluctuating components is proposed. It was concluded that a scale resolving technique is required to completely describe the WSS pattern in a subject specific vessel model, since the poststenotic region was dominated by large axial and circumferential fluctuations. Three poststenotic regions of different WSS characteristics were identified. The recirculation zone was subject to a time averaged WSS in the retrograde direction and large fluctuations. After reattachment there was an antegrade shear and smaller fluctuations than in the recirculation zone. At the reattachment the fluctuations were the largest, but no direction dominated over time. Due to symmetry the circumferential time average was always zero. Thus, in a blood vessel, the axial fluctuations would affect endothelial cells in a stretched state, whereas the circumferential fluctuations would act in a relaxed direction.


2001 ◽  
Vol 446 ◽  
pp. 309-320 ◽  
Author(s):  
IVAN MARUSIC ◽  
GARY J. KUNKEL ◽  
FERNANDO PORTÉ-AGEL

An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at Rθ = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wall-normal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and X-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with ‘outer-flow’ scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.


Author(s):  
Binqi Chen ◽  
Yiding Wang ◽  
Yu Liu

This study develops a novel rough-wall model for large eddy simulation (LES) based on recent work on wall-modelled LES. This approach is capable of solving for the basic flow character over a rough wall at high Reynolds numbers without resolving the details of the roughness elements. The wall-modelled LES approach on a smooth wall is proven to be sufficiently precise to predict the velocity profile and wall shear stress. The average roughness shear stress can be combined with the smooth-wall shear stress in the inner-layer wall model by defining a roughness shear stress ratio α. The instantaneous shear stresses caused by the roughness elements are calculated by the pressure projection and elevation fields. The total shear stress is fed back to the outer-layer LES mesh as a new boundary condition. The results of the wall-modelled LES correspond well with the experimental data. The comparison between the simulation and experiment reveals that the wall-modelled LES approach presented in this research is capable of predicting the flow in a rough-wall boundary layer without resolving the detailed roughness element geometries.


2004 ◽  
Vol 16 (11) ◽  
pp. 3859-3867 ◽  
Author(s):  
Guo-Wei He ◽  
Meng Wang ◽  
Sanjiva K. Lele

Sign in / Sign up

Export Citation Format

Share Document