An Experimental Investigation Into the Effects of Grain Transport on Columnar to Equiaxed Transition During Dendritic Alloy Solidification

1999 ◽  
Vol 121 (2) ◽  
pp. 430-437 ◽  
Author(s):  
J. W. Gao ◽  
C. Y. Wang

An experimental study has been conducted to investigate the effects of grain transport on the columnar to equiaxed transition (CET) in dendritic alloy solidification. Using the aqueous ammonium chloride solution as a transparent model alloy, experiments were performed in a vertical test cell with cooling from the top, resulting in unidirectional columnar crystals growing downwards. Ahead of the columnar front, equiaxed nuclei were observed to originate mostly by fragmentation of the columnar dendrites in the presence of a thermally driven flow in the melt beneath the columnar mushy zone. Being heavier than the liquid, these fragments fall into the bulk melt where they may grow or remelt. The survived equiaxed crystals finally settle towards the floor and pile up to form an equiaxed bed. The CET occurs when the bottom equiaxed packed bed rises and eventually obstructs the columnar mushy zone growing from the upper surface. Therefore, the CET in the present configuration was predominantly controlled by the sedimentation of equiaxed crystals. A parametric study by varying initial concentration, cooling rate, and superheat was performed.

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1647
Author(s):  
Lingda Xiong ◽  
Chunming Wang ◽  
Zhimin Wang ◽  
Ping Jiang

A phase-field model was applied to study CET (columnar-to-equiaxed transition) during laser welding of an Al-Cu model alloy. A parametric study was performed to investigate the effects of nucleation undercooling for the equiaxed grains, nucleation density and location of the first nucleation seed ahead of the columnar front on the microstructure of the fusion zone. The numerical results indicated that nucleation undercooling significantly influenced the occurrence and the time of CET. Nucleation density affected the occurrence of CET and the size of equiaxed grains. The dendrite growth behavior was analyzed to reveal the mechanism of the CET. The interactions between different grains were studied. Once the seeds ahead of the columnar dendrites nucleated and grew, the columnar dendrite tip velocity began to fluctuate around a value. It did not decrease until the columnar dendrite got rather close to the equiaxed grains. The undercooling and solute segregation profile evolutions of the columnar dendrite tip with the CET and without the CET had no significant difference before the CET occurred. Mechanical blocking was the major blocking mechanism for the CET. The equiaxed grains formed first were larger than the equiaxed grains formed later due to the decreasing of undercooling. The size of equiaxed grain decreased from fusion line to center line. The numerical results were basically consistent with the experimental results obtained by laser welding of a 2A12 Al-alloy.


2017 ◽  
Vol 373 ◽  
pp. 162-166
Author(s):  
Er Yang Lu ◽  
Xing Zhong Cao ◽  
Shuo Xue Jin ◽  
Yi Hao Gong ◽  
Peng Zhang ◽  
...  

Dislocations would be induced after plastic deformation, which might change the mechanical properties of solids. FeCrNi austenitic model alloy and its Mo-diluted alloy were cold rolled with different degree of thickness reduction. Positrons are sensitive to point defects, which are easily trapped and annihilated around the trapping sites. The mean positron lifetimes have been used to estimate the average dislocation concentration in solids. Meanwhile, the trapping efficiency μ was calculated from the lifetime results. The trapping efficiency value is estimated about 3.31×10-7 cm3s-1 for FeCrNi alloy and 3.31×10-7 cm3s-1 for Mo-diluted alloy, respectively. The increment of the hardness value during plastic deformation is related to the increase of the dislocation density and dislocation pile up in solids.


2012 ◽  
Vol 15 (4) ◽  
pp. 216-229 ◽  
Author(s):  
Wajira U. Mirihanage ◽  
Huijuan Dai ◽  
Hongbiao Dong ◽  
David J. Browne

Sign in / Sign up

Export Citation Format

Share Document