Differences Between Second Law Analysis and Pinch Technology

1995 ◽  
Vol 117 (3) ◽  
pp. 186-191 ◽  
Author(s):  
D. A. Sama

The use of second law analysis to design a heat exchanger network is compared with the pinch technology approach. Differences between the two methods are identified and discussed in the light of claims made by practitioners of pinch technology. Second law insights are used to easily identify and correct design errors in a heat exchanger network, and to design maximum energy recovery networks. More importantly, it is found that use of the second law provides an understanding of the process which is totally absent in the pinch technology approach. The claims that pinch technology can find global optimum solutions, that only pinch technology can find maximum energy recovery heat exchanger networks, and that pinch technology is a form of second law analysis, are considered, discussed, and shown to be invalid.

1995 ◽  
Vol 117 (3) ◽  
pp. 179-185 ◽  
Author(s):  
D. A. Sama

The importance of using the second law of thermodynamics in the design of heat exchangers, heat exchanger networks, and processes in general, is discussed. The optimal ΔT at a refrigerated heat exchanger is considered from a second law viewpoint. It is shown that the use of minimum total annualized cost as the single optimizing factor is unsatisfactory. Total annualized costs are based on predicted costs of fuel, equipment, and capital, which are uncertain at best. Instead of a singular or “global optimum” ΔT, there is a range of optimal ΔTs, over which the total annualized cost is essentially the same, but within which the distribution between cost of capital and cost of energy is significantly different. In selecting a design ΔT, this distribution of costs should also be considered. The possibility of only one singular, or global optimum, solution for complex processes is also considered from a philosophical viewpoint, and is again rejected. The existence and identification of design decisions which unnecessarily waste thermodynamic availability (physical exergy) are discussed and identified as “second law errors.” Elimination of a second law error from a design guarantees an improved design. An optimal design, which may be any one of a numerous set of optimal designs, will result when all second law errors are eliminated. A design procedure to develop optimal process designs, using such thermodynamic insights, is proposed.


2007 ◽  
Vol 31 (7) ◽  
pp. 773-781 ◽  
Author(s):  
Massimiliano Errico ◽  
Sara Maccioni ◽  
Giuseppe Tola ◽  
Paola Zuddas

1989 ◽  
Vol 111 (3) ◽  
pp. 137-147 ◽  
Author(s):  
B. Linnhoff

Over recent years a new methodology for the analysis and design of heat exchanger networks, called pinch technology, has led to significant energy savings in the chemical and process industries. The methodology has later been extended to apply to integrated heat and power systems (Townsend and Linnhoff, 1983). This paper shows that pinch technology is firmly based in Second Law Analysis. In contrast to conventional Second Law Analysis, however, it does not require a base case design. Rather, it performs true synthesis. Also, it is capable of a methodical distinction between “inevitable” and “avoidable” exergy losses.


Most chemical processes are networks of different pieces of equipment. Usually, even the best pieces of equipment will give a poor overall process if linked up inappropriately in the network. This paper describes principles and procedures for better process network design. Development of the procedures began in 1972. In the years since, industrial applications have led to significant improvements in even the most modern processes. The paper begins with a fresh look at thermodynamic Second Law analysis. This classical analysis highlights inefficient parts of complex systems, drawing the engineer’s attention to excessive losses of potential. Unfortunately, the analysis is both difficult to produce and difficult to interpret. To tackle the first problem, the paper describes how Second Law information can be obtained from conventional heat and mass balances. There is no need for additional data. To tackle the second problem, the paper introduces a general distinction between ‘avoidable’ and ‘inevitable’ inefficiencies. This makes an interpretation of the analysis practically more meaningful. Next, the paper describes thermodynamic procedures and principles for specialized sub-tasks in process design. Emphasis is placed on heat recovery networks. Here, the problem is to recover as much heat as is economically justified within a process before externally supplied heat is used. The concept of ‘inevitable’ inefficiencies leads to techniques for the prediction of the ‘inevitable’ amount of external heating. This amount is called the energy target. The target either stimulates the engineer into achieving it or gives him confidence that his design is optimal. The paper continues by describing the concept of the heat recovery ‘pinch’. The pinch leads to the design of, first, heat exchanger networks, which achieve the energy targets, and, second, overall processes, which keep the targets low. Two common threads in all these procedures are the attempt to keep the engineer involved (they do not constitute ‘automatic’ design) and the attempt to make best practical use of inefficiencies that are ‘inevitable’ anyway. Owing to these features, the procedures usually help the engineer to find processes that are elegant in a general sense. Many designs found in practice were not only energy efficient but easily operated and maintained, safe, had relatively simple network structures and, most surprisingly, were cheap to build as well as cheap to run.


2019 ◽  
Vol 38 (1) ◽  
pp. 115
Author(s):  
Aleksandar Kosta Anastasovski

Drying processes are one of the main consumers of heat energy in production. Any decreases in heat consumption during the drying process will considerably decrease production costs. This study analyzes the high consumption of heat in the drying of baker`s yeast. The main task is to minimize the energy demand and lower the price of the final products with partial heat recovery. These changes will require system modifications. One of the most popular and effective methods that can be used in this case is heat process integration with Pinch Technology. In this study, a reference system was simulated with a mathematical model and analyzed for waste heat streams.This paper suggests the redesigning of a drying system for production of active dry yeast.  Selected streams that satisfy conditions for heat process integration were involved in the evaluation for a better solution. Two different scenarios were proposed as possible solutions. The suggested solutions are retrofit designs of Heat Exchanger Networks. These Heat Exchanger Networks include already installed heat exchangers as well as new heat transfer units. The selection of better design was made with economic analysis of investment. The proposed scenarios of the analyzed sub-system give improvement in heat energy recovery. The best determined solution reduces the cost and thus has the highest profitability, but not the highest heat energy recovery.


Author(s):  
Christodoulos A. Floudas

This chapter focuses on heat exchanger network synthesis approaches based on optimization methods. Sections 8.1 and 8.2 provide the motivation and problem definition of the HEN synthesis problem. Section 8.3 discusses the targets of minimum utility cost and minimum number of matches. Section 8.4 presents synthesis approaches based on decomposition, while section 8.5 discusses simultaneous approaches. Heat exchanger network HEN synthesis is one of the most studied synthesis/design problems in chemical engineering. This is attributed to the importance of determining energy costs and improving the energy recovery in chemical processes. The comprehensive review of Gundersen and Naess (1988) cited over 200 publications while a substantial annual volume of studies has been performed in the last few years. The HEN synthesis problem, in addition to its great economic importance features a number of key difficulties that are associated with handling: (i) The potentially explosive combinatorial problem for identifying the best pairs of hot and cold streams (i.e., matches) so as to enhance energy recovery; (ii) Forbidden, required, and restricted matches; (iii) The optimal selection of the HEN structure; (iv) Fixed and variable target temperatures; (v) Temperature dependent physical and transport properties; (vi) Different types of streams (e.g., liquid, vapor, and liquid-vapor); and (vii) Different types of heat exchangers (e.g., counter-current, noncounter-current, multistream), mixed materials of construction, and different pressure ratings. It is interesting to note that the extensive research efforts during the last three decades toward addressing these aforementioned difficulties/issues exhibit variations in their objectives and types of approaches which are apparently cyclical. The first approaches during the 1960s and early 1970s treated the HEN synthesis problem as a single task (i.e., no decomposition into sub-tasks). The work of Hwa (1965) who proposed a simplified superstructure which he denoted as composite configuration that was subsequently optimized via separable programming was a key contribution in the early studies, as well as the tree searching algorithms of Pho and Lapidus (1973). Limitations on the theoretical and algorithmic aspects of optimization techniques were, however, the bottleneck in expanding the applicability of the mathematical approaches at that time.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 695
Author(s):  
Yue Xu ◽  
Heri Ambonisye Kayange ◽  
Guomin Cui

The aim of heat exchanger network synthesis is to design a cost-effective network configuration with the maximum energy recovery. Therefore, a nodes-based non-structural model considering a series structure (NNM) is proposed. The proposed model utilizes a simple principle based on setting the nodes on streams such that to achieve optimization of a heat exchanger network synthesis (HENS) problem. The proposed model uses several nodes to quantify the possible positions of heat exchangers so that the matching between hot and cold streams is random and free. Besides the stream splits, heat exchangers with series structures are introduced in the proposed model. The heuristic algorithm used to solve NNM model is a random walk algorithm with compulsive evolution. The proposed model is used to solve four scale cases of a HENS problem, the results show that the costs obtained by NNM model can be respectively lower 3226 $/a(Case 1), 11,056 $/a(Case 2), 2463 $/a(Case 3), 527 $/a(Case 4) than the best costs listed in literature.


Sign in / Sign up

Export Citation Format

Share Document