The Volume of Motion: Introduction, Derivation, and an Application Comparing Various Spinal Fixation Devices

1993 ◽  
Vol 115 (1) ◽  
pp. 43-46 ◽  
Author(s):  
J. J. Crisco

Range of motion (ROM), the displacement between two limits, is one of the most common parameters used to describe joint kinematics. The ROM is a one-dimensional parameter, although the motion at many normal and pathological joints is three-dimensional. Certainly, the ROM yields vital information, but an overall measure of the three-dimensional mobility at a joint may also be useful. The volume of motion (VOM) is such a measure. The translational VOM is the volume defined by all possible ROMs of a point on a rigid body. The rotational VOM, although its interpretation is not as tangible as the translational VOM, is a measure of the three-dimensional rotational mobility of a rigid body. The magnitude of the VOM is proportional to mobility; the VOM is a scaler, which does not contain any directional information. Experimental determination of the VOM is not practical since it would require applying loads in an infinite number of directions. The mathematical derivation given here allows the VOM to be calculated, with the assumption of conservative elasticity, from the resultant displacements of three distinct load vectors of equal magnitude. An example of the VOM is presented in the comparison of the biomechanical stabilizing potential of various spinal fixation devices.

Author(s):  
Stefan Riedelmeier ◽  
Stefan Becker ◽  
Eberhard Schlücker

For the analysis of the effects of fluid-structure interaction (FSI) during water hammer in piping systems, a complex test facility was constructed. Resonance experiments with movable bends in two system configurations were carried out. The pressure and the displacement of the bend were recorded. The aim was to reproduce the results with two coupled codes: a one-dimensional solver based on the method of characteristics (MOC) for the hydraulic system and a three-dimensional solver based on the finite element method (FEM) working with one-dimensional beam elements for the structural system. The calculation included junction and friction coupling. The models were fine-tuned separately. For this purpose, special measurements were carried out. These included the determination of the structural damping, the friction factor, the influence of the bending of the anchorage, etc. After the validation of the models, the results of the coupled calculations were compared against the measurements, the performance of the coupled codes was evaluated and the most important physical effects were analyzed and are discussed.


1996 ◽  
Vol 9 (3) ◽  
pp. 234???240 ◽  
Author(s):  
Antonius Rohlmann ◽  
Jorge Calisse ◽  
Georg Bergmann ◽  
Jens Radvan ◽  
Heinz-Michael Mayer

2001 ◽  
Vol IV.01.1 (0) ◽  
pp. 73-74
Author(s):  
Hiroki KAWASHIMA ◽  
Ko TAKANO ◽  
Kazuhiro HASEGAWA ◽  
Toshiaki HARA

1992 ◽  
Vol &NA; (284) ◽  
pp. 267???272 ◽  
Author(s):  
GORDON RUSSELL ◽  
GUY LAVOIE ◽  
ROBERT EVENSON ◽  
MARC MOREAU ◽  
DAVID BUDNEY ◽  
...  

Author(s):  
Jasem Baroon ◽  
Bahram Ravani

In kinematics, the problem of motion reconstruction involves generation of a motion from the specification of distinct positions of a rigid body. In its most basic form, this problem involves determination of a screw displacement that would move a rigid body from one position to the next. Much if not all of the previous work in this area has been based on point geometry. In this paper, we develop a method for motion reconstruction based on line geometry. An elegant geometric method is developed based on line geometry that can be considered as a generalization of the classical Reuleaux’s method used in 2D kinematics. The case of over determined system is also considered a linear solution is presented based on least squares method.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Arpan Laskar ◽  
Sujit Kumar Pal

Permeability and consolidation of soil are known as the most variable soil properties. The values of permeability and consolidation of soil may vary with depth even in case of homogeneous soil layers, and because of that, the determination of appropriate values of permeability and consolidation is a complex and complicated engineering task. In this study, horizontal and vertical permeability apparatus and a 3D (three-dimensional) consolidation apparatus are developed to determine the effects of vertical pressure on horizontal and vertical permeability and the effects of vertical surcharge pressures on three-dimensional consolidation of soil. A series of horizontal and vertical permeability tests of soil under different vertical pressures and a series of 3D consolidation tests under different surcharge pressures are performed. From the study, it is observed that the horizontal and vertical permeability of soil changes with the changes in vertical pressures, and 3D consolidation of soil also changes with the changes in surcharge pressures. The horizontal and vertical permeability values obtained from the newly developed horizontal and vertical permeability apparatus are used in Terzaghi’s one-dimensional consolidation theory to find out the consolidation characteristics of the soil, and it is compared with the results obtained from the newly developed 3D consolidation apparatus.


Sign in / Sign up

Export Citation Format

Share Document