system configurations
Recently Published Documents


TOTAL DOCUMENTS

554
(FIVE YEARS 153)

H-INDEX

28
(FIVE YEARS 7)

2022 ◽  
Vol 308 ◽  
pp. 118339
Author(s):  
Anna H. Schleifer ◽  
Caitlin A. Murphy ◽  
Wesley J. Cole ◽  
Paul Denholm

2022 ◽  
Vol 14 (2) ◽  
pp. 876
Author(s):  
Roxana Gandomani ◽  
Moataz Mohamed ◽  
Amir Amiri ◽  
Saiedeh Razavi

Shared mobility is a viable choice to improve the connectivity of lower-density neighbourhoods or suburbs that lack high-frequency public transportation services. In addition, its integration with new forms of powertrain and autonomous technologies can achieve more sustainable and efficient transportation. This study compares four shared-mobility technologies in suburban areas: the Internal Combustion Engine, Battery Electric, and two Autonomous Electric Vehicle scenarios, for various passenger capacities ranging from three to fifteen. The study aims to provide policymakers, transportation planners, and transit providers with insights into the potential costs and benefits as well as system configurations of shared mobility in a suburban context. A vehicle routing problem with time windows was applied using the J-Horizon software to optimize the costs of serving existing intra-community demand. The results indicate a similar fleet composition for Battery Electric and Autonomous Electric fleets. Furthermore, the resulting fleet for all four technologies is dominated by larger vehicle capacities. Due to the large share of driver cost in the total cost, the savings using a fleet of Autonomous Electric Vehicles are predicted to be 68% and 70%, respectively, compared to Internal Combustion and Battery Electric fleets.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Lijo Francis ◽  
Farah Ejaz Ahmed ◽  
Nidal Hilal

Membrane Distillation (MD) is a membrane-based, temperature-driven water reclamation process. While research emphasis has been largely on membrane design, upscaling of MD has prompted advancements in energy-efficient module design and configurations. Apart from the four conventional configurations, researchers have come up with novel MD membrane module designs and configurations to improve thermal efficiency. While membrane design has been the focus of many studies, development of appropriate system configurations for optimal energy efficiency for each application has received considerable attention, and is a critical aspect in advancing MD configurations. This review assesses advancements in modified and novel MD configurations design with emphasis on the effects of upscaling and pilot scale studies. Improved MD configurations discussed in this review are the material gap MD, conductive gap MD, permeate gap MD, vacuum-enhanced AGMD/DCMD, submerged MD, flashed-feed MD, dead-end MD, and vacuum-enhanced multi-effect MD. All of these modified MD configurations are designed either to reduce the heat loss by mitigating the temperature polarization or to improve the mass transfer and permeate flux. Vacuum-enhanced MD processes and MD process with non-contact feed solution show promise at the lab-scale and must be further investigated. Hollow fiber membrane-based pilot scale modules have not yet been sufficiently explored. In addition, comparison of various configurations is prevented by a lack of standardized testing conditions. We also reflect on recent pilot scale studies, ongoing hurdles in commercialization, and niche applications of the MD process.


Author(s):  
Daniel Gebauer ◽  
Jonas Dirr ◽  
Gunther Reinhart

AbstractThe assembly of cables in industrial production is still a largely manually performed task. Therefore, automatic cable assembly offers much potential in terms of efficiency. The major challenge of automating this task lies in the formlessness of the cables, which entails unknown and inconstant states of the assembly objects. In this paper, a process chain and a concept are presented for the automated cable assembly in an industrial context. The process chain consists of five process steps, which are used to structure existing approaches and system configurations for automated cable assembly from a production technology perspective. The emphasis is on the coverage of the process steps and the system technology. The presented concept represents an approach for robotic cable assembly focusing on the flexibility to process multiple product variants. Basis for the ability to handle a variety of variants is the avoidance of a forced shape on the cables. For this approach, system technology as well as challenges and possible solutions are presented.


Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 72
Author(s):  
Gustavo F. Nardón ◽  
Guido F. Botta ◽  
Kojo A. Aikins ◽  
David Rivero ◽  
Fernando Bienvenido ◽  
...  

No-tillage farming can improve crop productivity and the reliability of cropping compared with conventional tillage. The effects of three different seeding system configurations on surface residue handling, sunflower emergence and stand establishment, yield, and gross income were investigated over three cropping seasons. The seeding system configurations comprised a (1) turbo coulter blade, (2) notched disc row cleaner before turbo coulter blade, and (3) no residue handling unit installed in front of a double-disc opener. For all three seeding system configurations, crop residue cover on sown rows (after seeding) was greater than the minimum recommended value of 30% for no-tillage. Residue cover was best with the notched disc row cleaner in front of the turbo coulter blade compared to the other two seeding systems. Furthermore, the notched disc row cleaner in front of the turbo coulter blade produced the highest plant emergence counts and the most uniform stand establishment. Sunflower yield and gross income were highest with the notched disc row cleaner in front of the turbo coulter blade (3.16 Mg·ha−1 and 902 USD·ha−1) compared to when only the turbo coulter blade (2.38 Mg·ha−1 and 680 USD·ha−1) or no residue handling unit (1.69 Mg·ha−1 and 482 USD·ha−1) was used.


2021 ◽  
Vol 48 ◽  
pp. 101634
Author(s):  
María Gasque ◽  
Pablo González-Altozano ◽  
Rosa Penélope Gutiérrez-Colomer ◽  
Eugenio García-Marí

2021 ◽  
Author(s):  
Felix Schaefer

One of the possible SOFC system-configurations providing the highest potential of electrical DC-efficiency of up to 65% is a SOFC-system with anode exhaust gas recirculation (AEGR), where part of the depleted anode exhaust gas is recirculated and mixed with fresh natural gas upstream of the reformer. For safe and durable operation of a SOFC-system, the oxygen-to-carbon-ratio and the fuel utilization as characteristic parameters must not exceed stack- and reformer-specific thresholds. The determination and control of the characteristic parameters are therefore of crucial importance. However, this poses especially for SOFC-systems with AEGR due to enhanced system complexity a challenging task. In this paper, the authors present an overview on representative control strategies as well as different approaches to determine or diagnose characteristic parameters with emphasis on SOFC-systems with AEGR. Some conclusions are discussed based on the provided overview and outlines recommendations for future research work.


Sign in / Sign up

Export Citation Format

Share Document