Sequential Linearization as an Approach to Real-Time Marine Gas Turbine Simulation

1990 ◽  
Vol 112 (2) ◽  
pp. 187-191 ◽  
Author(s):  
D. L. Smith ◽  
V. A. Stammetti

A real-time marine gas turbine simulation would offer an essential basis for advanced marine propulsion control designs. Such designs may be realized as model reference controllers and/or health monitoring controllers. This paper presents an approach to real-time turbine simulation, using a method of sequential state space linearizations. The linearizations are shown to be simple enough to be computed in real time. Comparisons between simulations and experiments are presented and discussed. The approach is shown to have very good accuracy for both transient and steady-state predictions.

Author(s):  
David L. Smith ◽  
Vincent A. Stammetti

A real time marine gas turbine simulation would offer an essential basis for advanced marine propulsion control designs. Such designs may be realized as model reference controllers and/or health monitoring controllers. This paper presents an approach to real time turbine simulation using a method of sequential state space linearizations. The linearizations are shown to be simple enough to be computed in real time. Comparisons between simulations and experiments are presented and discussed. The approach is shown to have very good accuracy for both transient and steady state predictions.


Author(s):  
Michael J. Roemer ◽  
Gregory J. Kacprzynski

Real-time, integrated health monitoring of gas turbine engines that can detect, classify, and predict developing engine faults is critical to reducing operating and maintenance costs while optimizing the life of critical engine components. Statistical-based anomaly detection algorithms, fault pattern recognition techniques and advanced probabilistic models for diagnosing structural, performance and vibration related faults and degradation can now be developed for real-time monitoring environments. Integration and implementation of these advanced technologies presents a great opportunity to significantly enhance current engine health monitoring capabilities and risk management practices. This paper describes some novel diagnostic and prognostic technologies for dedicated, real-time sensor analysis, performance anomaly detection and diagnosis, vibration fault detection, and component prognostics. The technologies have been developed for gas turbine engine health monitoring and prediction applications which includes an array of intelligent algorithms for assessing the total ‘health’ of an engine, both mechanically and thermodynamically. This includes the ability to account for uncertainties from engine transient conditions, random measurement fluctuations and modeling errors associated with model-based diagnostic and prognostic procedures. The implementation of probabilistic methods in the diagnostic and prognostic methodology is critical to accommodating for these types of uncertainties.


Author(s):  
D. A. O’Neil

This paper examines typical shipboard operational requirements, conventional marine propulsion control methodology, and the related merits of power and speed governing for the aircraft derived marine gas turbine engine applications of the future.


Author(s):  
Dalya H. Al-Mamoori ◽  
Mohanad H. Aljanabi ◽  
Ali Assim Alobaidi ◽  
Omar Muhammed Neda ◽  
Zaid H. Al-Tameemi

<p>Modern gas turbines are a significant source for power generation and prime mover for marine propulsion. The depleting fossil fuel sources have provided a cue for broader implementation and usage of renewable energy. Biofuel has been touted as a substitute for natural gas to power gas turbines. To confirm the dependability and reliability of this attempt in a complex multi-domain system, for example, the gas turbine, the fuel system of the micro-gas turbine is designed and modelled using MATLAB Simulink. The model; simulates the; transient and steady state of a gas turbine’s nominal functional situations. Evaluations between the field data and; simulation outcomes validate a high degree of correspondence. The fuel system in the micro;-gas turbine simulation model is also optimized with the experimental data. </p>


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


Sign in / Sign up

Export Citation Format

Share Document