Life assessment of a high temperature probe designed for performance evaluation and health monitoring of an aero gas turbine engine

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2014 ◽  
Vol 74 ◽  
pp. 129-134 ◽  
Author(s):  
Vincenzo Cuffaro ◽  
Francesca Curà ◽  
Raffaella Sesana

1992 ◽  
Author(s):  
KIRK D ◽  
ANDREW VAVRECK ◽  
ERIC LITTLE ◽  
LESLIE JOHNSON ◽  
BRETT SAYLOR

Author(s):  
Mohamed A. Altaher ◽  
Hu Li ◽  
Simon Blakey ◽  
Winson Chung

This paper investigated the emissions of individual unburned hydrocarbons and carbonyl compounds from the exhaust gas of an APU (Auxiliary Power Unit) gas turbine engine burning various fuels. The engine was a single spool, two stages of turbines and one stage of centrifugal compressor gas turbine engine, and operated at idle and full power respectively. Four alternative aviation fuel blends with Jet A-1 were tested including GTL, hydrogenated renewable jet fuel and fatty acid ester. C2-C4 alkenes, benzene, toluene, xylene, trimethylbenzene, naphthalene, formaldehyde, acetaldehyde and acrolein emissions were measured. The results show at the full power condition, the concentrations for all hydrocarbons were very low (near or below the instrument detection limits). Formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions. Formaldehydes emissions were reduced for all fuels compared to Jet A-1 especially at the idle conditions. There were no differences in acetaldehydes and acrolein emissions for all fuels; however, there was a noticeable reduction with GTL fuel. The aromatic hydrocarbon emissions including benzene and toluene are decreased for the alternative and renewable fuels.


2000 ◽  
Author(s):  
Zhiwu Xie ◽  
Ming Su ◽  
Shilie Weng

Abstract The static and transient performance of a gas turbine engine is determined by both the characteristics of the engine components and their interactions. This paper presents a generalized simulation framework that enables the integration of different component and system simulation codes. The concept of engine simulation integration and its implementation model is described. The model is designed as an object-oriented system, in which various simulation tasks are assigned to individual software components that interact with each other. A new design rationale called “message-based modeling” and its resulting class structure is presented and analyzed. The object model is implemented within a heterogeneous network environment. To demonstrate its flexibility, the codes that deal with different engine components are separately programmed on different computers running various operating systems. These components communicate with each other via a CORBA compliant ORB, which simulates the overall performance of an engine system. The resulting system has been tested on a Local Area Network (LAN) to simulate the transient response of a three-shaft gas turbine engine, subject to small fuel step perturbations. The simulation results for various network configurations are presented. It is evident that in contrast to a standalone computer simulation, the distributed implementation requires much longer simulation time. This difference of simulation efficiency is analyzed and explained. The limitations of this endeavor, along with some future research topics, are also reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document