Natural Convection Heat Transfer From Cylinders of Arbitrary Cross Section

1992 ◽  
Vol 114 (3) ◽  
pp. 768-773 ◽  
Author(s):  
A. V. Hassani
2011 ◽  
Vol 110-116 ◽  
pp. 4451-4464 ◽  
Author(s):  
Ghalib Y. Kahwaji ◽  
Abbas S. Hussien ◽  
Omar M. Ali

In the present work, the natural convection heat transfer from horizontal cylinder with square cross section situated in a square enclosure, vented symmetrically from the top and the bottom was investigated numerically. The work investigate the effect of the Ra, enclosure width and opening size of the enclosure on the streamlines, isotherms and heat transfer results. The numerical work included the solution of the governing equations in the vorticity-stream function formulation which were transformed into body fitted coordinate system. The transformations are based initially on algebraic grid generation and elliptic grid generation to map the physical domain between the heated horizontal cylinder and the vented enclosure into a computational domain. A hybrid scheme finite volume based finite difference method was used. The study included the following ranges of the studied variables:- 0 < Ra ≤ 6.5× 105 1.5 ≤ W/H ≤ 4 0.375 < O/H ≤ 4 The numerical results were compared with experimental results, which showed good agreement. The effect of cylinder cross section, Ra, enclosure width, and opening size on the Nu, mass flowrate, flow patterns and isotherms were investigated. The results show that the cylinder cross section has a large influence on the results especially the Nu. The Nu is proportional with Ra and inversely proportional with enclosure width and opening size. The flow patterns and isotherms display the flow and temperature behaviors with changing studied variables. The results show that the starting of natural convection heat transfer depended on the cylinder cross-section, enclosure width and opening size in addition with Ra. In addition, the results display that the hydrodynamic and thermal boundary layer thickness decreases with increasing Ra. Nomenclature


1994 ◽  
Vol 116 (1) ◽  
pp. 96-104 ◽  
Author(s):  
S. B. Clemes ◽  
K. G. T. Hollands ◽  
A. P. Brunger

A new set of measurements is reported on natural convection heat transfer in air from isothermal long horizontal cylinders of noncircular cross section at various orientations, covering the Rayleigh number (Ra) range from about 103 to about 109. The data are correlated reasonably well by a conduction layer model with a constant value (i.e., the same for all body shapes and orientations) of 5.42 for the Churchill-Usagi coefficient blending the laminar and turbulent asymptotes. The resulting correlation equation normally requires only the geometric specification of the body height and perimeter. This model is also tested against data in the literature on the subject problem, and found to be generally predictive, to within about ±10 percent. A new set of data covering the same Ra range is also reported for the circular cross-section case, i.e., the long horizontal isothermal circular cylinder. Comparison of this data with the several existing correlations for this well-known problems shows that the Kuehn and Goldstein equation predicts the data best, although the Raithby and Hollands equation also predicts the data very well, but only after a revision to the blending coefficient.


Sign in / Sign up

Export Citation Format

Share Document