Numerical Evaluation of the Performance of Active Noise Control Systems

1990 ◽  
Vol 112 (2) ◽  
pp. 230-236 ◽  
Author(s):  
C. G. Mollo ◽  
R. J. Bernhard

Most of the approaches to the prediction of the effectiveness of active noise control systems are analytical in nature. Analytical approaches are limited to active noise control systems where a solution to the governing acoustic wave equation is available. The objective of the investigation presented in this paper was to develop a generalized numerical technique for evaluating the optimal performance of active noise controllers. The numerical technique used as the basis of the numerical analysis is the indirect boundary element method (IBEM). Boundary element methods have been shown to be straightforward and accurate numerical methods for the prediction of the acoustic response of a system. The IBEM numerical procedures are used here to derive the active noise controllers for optimal control of enclosed harmonic sound fields where the noise source strengths or the enclosure boundary description may not be known. Detectors are introduced into the system to deduce the unknown noise source strengths. The performance prediction for a single input, single output system is presented. Analysis of the stability and observability of the active noise control system employing detectors is also presented.

1991 ◽  
Vol 113 (3) ◽  
pp. 387-394 ◽  
Author(s):  
K. A. Cunefare ◽  
G. H. Koopmann

This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius α at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.


2020 ◽  
Vol 148 (3) ◽  
pp. 1519-1528
Author(s):  
Jihui Aimee Zhang ◽  
Naoki Murata ◽  
Yu Maeno ◽  
Prasanga N. Samarasinghe ◽  
Thushara D. Abhayapala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document