Calculation of Three-Dimensional Boundary Layers on Rotating Turbine Blades

1987 ◽  
Vol 109 (1) ◽  
pp. 41-49 ◽  
Author(s):  
O. L. Anderson

An assessment has been made of the applicability of a three-dimensional boundary-layer analysis to the calculation of heat transfer and streamline flow patterns on the surfaces of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary three-dimensional surfaces and also to calculate the boundary-layer edge conditions for compressible flow using the surface Euler equations and experimental pressure distributions. Using available experimental data to calibrate the method, calculations are presented for the endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the three-dimensional boundary-layer analysis can give good predictions of the flow field and heat transfer on the pressure, suction, and endwall surfaces in a gas turbine passage.

2014 ◽  
Vol 17 (2) ◽  
pp. 401-412 ◽  
Author(s):  
M. M. MacDevette ◽  
T. G. Myers ◽  
B. Wetton

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Stephen P. Lynch ◽  
Karen A. Thole

The boundary layer on the endwall of an axial turbomachine passage is influenced by streamwise and cross-stream pressure gradients, as well as a large streamwise vortex, that develop in the passage. These influences distort the structure of the boundary layer and result in heat transfer and friction coefficients that differ significantly from simple two-dimensional boundary layers. Three-dimensional contouring of the endwall has been shown to reduce the strength of the large passage vortex and reduce endwall heat transfer, but the mechanisms of the reductions on the structure of the endwall boundary layer are not well understood. This study describes three-component measurements of mean and fluctuating velocities in the passage of a turbine blade obtained with a laser Doppler velocimeter (LDV). Friction coefficients obtained with the oil film interferometry (OFI) method were compared to measured heat transfer coefficients. In the passage, the strength of the large passage vortex was reduced with contouring. Regions where heat transfer was increased by endwall contouring corresponded to elevated turbulence levels compared to the flat endwall, but the variation in boundary layer skew across the passage was reduced with contouring.


1982 ◽  
Vol 104 (2) ◽  
pp. 439-449 ◽  
Author(s):  
W. T. Thompkins ◽  
W. J. Usab

A quasi-three-dimensional, finite difference boundary layer analysis for rotating blade rows has been developed which uses pressure distribution and streamline position data from a three-dimensional Euler equation solver. This analysis uses as coordinate lines the blade normal vector, the local inviscid streamline direction and a crossflow coordinate tine perpendicular to both normal and streamline coordinate lines. The equations solved may be determined either by assuming the crossflow velocity to be small or that its variation in the crossflow direction is small. Thus the analysis would not apply to a region where the boundary layer character changes rapidly such as a corner but could be expected to provide good results away from hub or tip casing boundary layers. Modified versions of Keller’s box scheme are used to solve the streamwise and crossflow momentum equations as well as the energy equation. Results are presented for a high-tip speed, low aspect ratio rotor designed by NASA Lewis Research Center which show that the three-dimensional boundary layer separates significantly sooner and has a much larger influence on rotor performance than would be expected from a two-dimensional analysis.


1971 ◽  
Vol 93 (3) ◽  
pp. 264-270 ◽  
Author(s):  
Robert A. Cochran ◽  
James A. Fay

An experimental investigation of the rate of heat transfer to the insulator wall of a quasi-steady magnetogasdynamic accelerator is described. The experiments were conducted in an accelerator section attached to the end of a shock tube using argon as the test gas. The measurements are compared with a Hartmann boundary-layer analysis, which correlates the data within the experimental scatter. Based on this theory, estimates of the current shorting through the boundary layer and energy fluxes to the wall are made and compared with the accelerator’s overall performance.


Sign in / Sign up

Export Citation Format

Share Document