Cold Flow Turbine Rig Tests of the Original and Redesigned Compressor Turbines of an Industrial Gas Turbine Engine

1989 ◽  
Vol 111 (2) ◽  
pp. 146-152
Author(s):  
I. S. Diakunchak

This paper describes the results of cold flow turbine rig tests carried out on the original and redesigned compressor turbines of an industrial gas turbine engine. Some details of the aerodynamic design of the latest variant, a brief description of the advanced technology design methods used in this design, and a description of the test facility are included. Bulk stage performance and detail rotor exit radial-circumferential traverse results are presented. These test results demonstrate that the design point stage efficiency of the redesigned compressor turbine is about six percentage points higher than that of the original design.

Author(s):  
Ihor S. Diakunchak

The fully loaded factory test of the CW251B12 45 MW class industrial gas turbine is described in this paper. This gas turbine is the latest uprating of the W251 series of engines. The main objectives of the factory test were the verification of the performance and the mechanical integrity of the new engine model. A brief description of the main features of the engine, the application of the first unit, the test facility, and the engine instrumentation used in the test is included. Details of the engine performance test results, telemetry test data results, and the hot end component metal temperature measurements are provided.


1978 ◽  
Author(s):  
E. L. Wheeler

The Garrett GTPF990 gas turbine engine is being developed under a U.S. Navy contract to fulfill both propulsion and generator drive repuirements. This is a unique second-generation marine engine that is not derived from an aircraft engine counterpart. The engine development is nearing completion, endurance testing has started, and all other qualification testing has been conducted. This paper is a development status report. A description of the engine and special maintenance features is presented. Emphasis is placed on qualification test results, development test experience, and the resulting design improvements.


1991 ◽  
Vol 113 (4) ◽  
pp. 482-487 ◽  
Author(s):  
I. S. Diakunchak

The fully loaded factory test of the CW251B12 45 MW class industrial gas turbine is described in this paper. This gas turbine is the latest uprating of the W251 series of engines. The main objectives of the factory test were the verification of the performance and the mechanical integrity of the new engine model. A brief description of the main features of the engine, the application of the first unit, the test facility, and the engine instrumentation used in the test is included. Details of the engine performance test results, telemetry test data results, and the hot end component metal temperature measurements are provided.


Author(s):  
Ihor S. Diakunchak ◽  
David R. Nevin

A fully loaded factory test of the CW251B10 41MW class industrial gas turbine was carried out at the Westinghouse Canada test facility. This gas turbine, which is the latest of the W251 engine series, represents an advancement in industrial gas turbine technology. One of the main objectives of the factory test was the verification of the engine performance. The test results demonstrated that the CW251B10 engine achieved its performance goals. This paper describes some of the results of the performance tests and includes engine component performance details.


Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


2010 ◽  
Author(s):  
Shahrokh Etemad ◽  
Benjamin Baird ◽  
Sandeep Alavandi ◽  
William Pfefferle

Author(s):  
Vladimir Lupandin ◽  
Martyn Hexter ◽  
Alexander Nikolayev

This paper describes a development program active at Magellan Aerospace Corporation since 2003, whereby specific modifications are incorporated into an Avco Lycoming T-53 helicopter gas turbine engine to enable it to function as a ground based Industrial unit for distributed power generation. The Lycoming T-53 is a very well proven and reliable two shaft gas turbine engine whose design can be traced back to the 1950s and the fact of its continued service to the present day is a tribute to the original design/development team. Phase 1 of the Program introduces abradable rotor path linings, blade coatings and changes to seal and blade tip clearances. Magellan has built a test cell to run the power generation units to full speed and full power in compliance with ISO 2314. In co-operation with Zorya-Mashproekt, Ukraine, the exhaust emissions of the existing combustion system for natural gas was reduced by 30%. New nozzles for low heat value fuels and for high hydrogen content fuels (up to 60% H2) have been developed. The T-53 gas turbine engine exhaust gas temperature is typically around 620 deg C, which makes it a very good candidate for co-generation and recuperated applications. As per Phase 2 of the program, the existing helicopter integral gearbox and separate industrial step-down gearbox will be replaced with single integral gearbox that will use the same lubrication oil system as the gas turbine engine. The engine power output will increase to 1200 kW at the generator terminals with an improvement to 25% efficiency ISO. Phase 3 of the Program will see the introduction of a new silo type combustion system, developed in order to utilize alternative fuels such as bio-diesel, biofuel (product of wood pyrolysis), land fill gases, syn gases etc. Phase 4 of the Program in cooperation with ORMA, Russia will introduce a recuperator into the package and is expected to realize a boost in overall efficiency to 37%. The results of testing the first two T-53 industrial gas turbine engines modified per Phase 1 will be presented.


Sign in / Sign up

Export Citation Format

Share Document