Performance of the SSPS Solar Power Plants at Almeria

1988 ◽  
Vol 110 (4) ◽  
pp. 235-247 ◽  
Author(s):  
Gunnar Wettermark

The article summarizes the results of the operation of the two solar power plants of the SSPS project (Small Solar Power Systems) at Almeria, carried out within the framework of the International Energy Agency. The two power plants were built side by side in order to compare two thermal-electric techniques, one being a distributed collector system (DCS) with arrays of parabolic troughs and the other a central receiver system (CRS) with heliostats concentrating the sunlight onto the top of a tower. Each plant was constructed with a nominal capacity of 500 kWel and was expected to have a net yearly output on the order of 1 GWh.—Only the DCS plant was in operation sufficiently to enable an assessment of possible annual production of electricity. Through extrapolation one finds that the gross output of the built plant was maximal 0.25 GWh with an overall efficiency of 2.3 percent for a plant with 100 percent availability and no malfunctions. Internal electricity consumption correspondingly calculated amounts to 0.11 GWh resulting in only 0.14 GWh yearly net output. Using the experimental values from the CRS plant, it appears that its yearly gross output could have been similar to that of the DCS plant but at higher internal electricity consumption, particularly due to the trace heating of the heat transfer medium (sodium).—The technical reasons for the poor efficiency of the SSPS installation were largely that the solar climate was less favorable then assumed, dirt accumulated on the mirrors at a more rapid rate than foreseen, the nonsolar specific components were badly matched and yielded low efficiencies, and thermal inertia was crucial and almost overlooked in the planning stage.—A detailed loss analysis is presented in the article.

The main objective of this research is analysed and compared the performance of two solar power plants to identify the possible operational problems in the tropical region. The grid connected PV power plants considered in the present study, Ten Merina and Senergy, were installed in the region of Thies (Senegal). Solar power plants have the same installed capacity 29.491 MWp. A period of one operation year of the solar power plants is considered, starting from January 2018 to December 2018. The performance parameters developed by the International Energy Agency (IEA) are used to analyse the performances of solar power plants. The results show that the plane of array irradiance at the sites is identical with an annual average of 6.2 kWh/m2/d. The annual average performance ratio and final yield of solar power plants are respectively 74.3 %; 4.61 kWh/kWp to Ten Merina and 75.9 %; 4.66 kWh/kWp to Senergy. These results are compared to other solar power plants installed in different locations around the world.


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 840-863
Author(s):  
Hugo Algarvio

Global warming contributes to the worldwide goal of a sustainable carbon-neutral society. Currently, hydroelectric, wind and solar power plants are the most competitive renewable technologies. They are limited to the primary resource availability, but while hydroelectric power plants (HPPs) can have storage capacity but have several geographical limitations, wind and solar power plants have variable renewable energy (VRE) with stochastic profiles, requiring a substantially higher investment when equipped with battery energy storage systems. One of the most affordable solutions to compensate the stochastic behaviour of VRE is the active participation of consumers with demand response capability. Therefore, the role of citizen energy communities (CECs) can be important towards a carbon-neutral society. This work presents the economic and environmental advantages of CECs, by aggregating consumers, prosumers and VRE at the distribution level, considering microgrid trades, but also establishing bilateral agreements with large-scale VRE and HPPs, and participating in electricity markets. Results from the case-study prove the advantages of CECs and self-consumption. Currently, CECs have potential to be carbon-neutral in relation to electricity consumption and reduce consumers’ costs with its variable term until 77%. In the future, electrification may allow CECs to be fully carbon-neutral, if they increase their flexibility portfolio.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Jesús M. Lata ◽  
Manuel Rodríguez ◽  
Mónica Álvarez de Lara

Molten salt technology represents nowadays the most cost-effective technology for electricity generation for stand-alone solar power plants. Although this technology can be applied to both concentrating technologies, parabolic through and central receiver systems (CRSs), CRS technology can take advantages from its higher concentration, allowing to work at higher temperatures and therefore with a reduction in the size and cost of the storage system. The receiver system is the “door” for which the energy passes from the field collector to the thermal-electric cycle; it represents, therefore, the core of the CRS and its performance directly affects plant production. Starting from the published lessons from SOLAR TWO receiver technology, the validation of an improved receiver for molten salt technology was assumed as part of the SOLAR TRES solar thermal power commercial plant development. Main challenges for the new receiver were to increase its allowable peak flux up to 1MW∕m2 in order to maximize the thermal efficiency of the CRS solar power plant, and to improve its safe life without limiting the incident fluxes that the field of heliostats is able to deliver with an optimized pointing strategy. Several advanced features in geometric and thermodynamic aspects and in its material selection have been implemented on the receiver. With the results of a sensitivity analysis carried out with an own code developed by SENER (SENREC), a prototype receiver panel was designed, fabricated, and installed in a proper test bed at the PSA. Test validation on this panel was carried out in 2007. The initial test results show a very good behavior of the prototype receiver, which allows to anticipate that the objectives of its design can be fulfilled. SENER and CIEMAT have joined forces to face up the challenge of sizing and designing a new molten salt receiver of high thermal efficiency, able to operate at high fluxes without compromising its durability (at least 25years). Main challenges for the new receiver design were to optimize the receiver dimensions and receiver tube sizes and material selection to surpass the operating conditions in the new plants with respect to SOLAR TWO.


Sign in / Sign up

Export Citation Format

Share Document