Determination of Residual Stresses From Stress Intensity Factor Measurements

1971 ◽  
Vol 93 (2) ◽  
pp. 242-246 ◽  
Author(s):  
S. Vaidyanathan ◽  
I. Finnie

It is shown that a familiar procedure for obtaining stress intensity factors for a plate containing a through crack may be inverted. That is, stress intensity factor measurements may be used to deduce the state of stress that existed in the plate prior to introduction of the crack. This approach to residual stress measurement appears to be superior to existing methods for situations in which the stress gradients in the plane of the plate are large. As an illustration, the residual stress distribution in an electron beam welded aluminum plate is determined.

1981 ◽  
Vol 103 (1) ◽  
pp. 66-75 ◽  
Author(s):  
E. F. Rybicki ◽  
R. B. Stonesifer ◽  
R. J. Olson

The effect of a girth-weld-induced residual stress field on the linear elastic fracture mechanics of a thin-walled pipe is examined. The procedure for using the residual stress distribution to compute KI and KII for a circumferential crack which is growing radially is described. In addition to the two-pass girth weld, stress intensity factors are computed for a residual stress distribution in a flat plate and for a hypothetical residual stress state in a second thin-walled pipe. The computed stress intensity factor for the flat plate geometry and its residual stress distribution are compared with a solution from the literature as a check on the computational procedure. The through-the-thickness residual stress distribution due to the two-pass girth weld is similar to a half-cosine wave. For purposes of comparison, the hypothetical through-the-thickness distribution selected for the second pipe is similar to a full cosine wave. The stress intensity factor is presented as a function of crack depth for a crack initiating on the inner surface of the pipe. The redistribution of residual stresses due to crack growth is also shown for selected crack lengths. The study shows that residual stress-induced crack growth in pipes can be significantly different from that in flat plates due to the possibility of locked-in residual bending moments in the pipe. These locked-in moments can have effects similar to externally applied loads and can either promote or restrain crack growth. A residual stress distribution is illustrated in which crack growth, if initiated, would continue through the entire wall. Also, a residual stress distribution is illustrated for which the crack could arrest after a certain amount of growth.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Katsumasa Miyazaki ◽  
Masahito Mochizuki

The stress intensity factor estimated by the appropriate modeling of components is essential for the evaluation of crack growth behavior in stress corrosion cracking. For the appropriate modeling of a welded component with a crack, it is important to understand the effects of residual stress distribution and the geometry of the component on the stress intensity factor of the surface crack. In this study, the stress intensity factors of surface cracks under two assumed residual stress fields were calculated. As residual stress field, a bending type stress field (tension-compression) and a self-equilibrating stress field (tension-compression-tension) through the thickness were assumed, respectively. The geometries of the components were plate and piping. The assumed surface cracks for those evaluations were a long crack in the surface direction and a semi-elliptical surface crack. In addition, crack growth evaluations were conducted to clarify the effects of residual stress distribution and the geometry of the component. Here, the crack growth evaluation means simulating increments of crack depth and length using crack growth properties and stress intensity factors. The effects of residual stress distribution and component geometry on the stress intensity factor of surface cracks and the appropriate modeling of cracked components are discussed by comparing the stress intensity factors and the crack growth evaluations for surface cracks under residual stress fields.


Author(s):  
Katsumasa Miyazaki ◽  
Masahito Mochizuki

The stress intensity factor estimated by using the appropriate modeling of components is essential for evaluation of crack growth behavior in stress corrosion cracking. For the appropriate modeling of welded components with a crack, it is important to understand the effects of residual stress distribution and geometry of component on the stress intensity factor of surface crack. In this study, the stress intensity factors of surface crack under two assumed residual stress fields were calculated. As residual stress field, the bending type stress field (tension-compression) and the self-equilibrating stress field (tension-compression-tension) through the thickness were assumed. The geometries of components were plate and piping. The assumed surface cracks for evaluations were long crack in surface direction and semi-elliptical surface crack. Furthermore, the crack growth evaluations were conducted to understand the effects of residual stress distribution and geometry of component. Here, the crack growth evaluation means the simulation of increments of crack depth and length by using the crack growth property and stress intensity factors. From the comparison of stress intensity factors and crack growth evaluation for surface crack under residual stress field, the effects of residual stress distribution and geometry of component on the stress intensity factor of surface crack and appropriate modeling of cracked components were discussed.


Author(s):  
Tetsuo Yasuoka ◽  
Yoshihiro Mizutani ◽  
Akira Todoroki

Welds and heat affected zones have the distribution of the residual stress or the yield strength. The crack growth evaluation is conventionally conducted using stress intensity factor in those regions. However, the stress intensity factor may be invalid when the residual stress distribution or yield strength distribution changes in the vicinity of a crack tip. The reason is that the distributions around the crack tip affect the plastic zone size and the stress intensity factor inappropriately represents the stress state in the vicinity of a crack tip. In this study, the residual stress distribution and yield strength distribution was assumed along the crack propagation path and the validity of the stress intensity factor was discussed on that condition. As a result, the stress intensity factor tended to be invalid when the steep residual stress distribution or the steep yield strength distribution. When the steep distribution exists, the crack growth evaluation should be conducted using a parameter considering the elastoplastic behavior near the crack tip. For that purpose, the authors proposed new method of the plastic zone correction using a differential term of the stress intensity factor. The new method was demonstrated through the case study for stress corrosion cracking of nuclear power plants.


Author(s):  
Do-Jun Shim ◽  
Matthew Kerr ◽  
Steven Xu

Recent studies have shown that the crack growth of PWSCC is mainly driven by the weld residual stress (WRS) within the dissimilar metal weld. The existing stress intensity factor (K) solutions for surface cracks in pipe typically require a 4th order polynomial stress distribution through the pipe wall thickness. However, it is not always possible to accurately represent the through thickness WRS with a 4th order polynomial fit and it is necessary to investigate the effect of the WRS fitting on the calculated stress intensity factors. In this paper, two different methods were used to calculate the stress intensity factor for a semi-elliptical circumferential surface crack in a pipe under a given set of simulated WRS. The first method is the Universal Weight Function Method (UWFM) where the through thickness WRS distribution can be represented as a piece-wise cubic fit. In the second method, the through thickness WRS profiles are represented as a 4th order polynomial curve fit (both using the entire wall thickness data and only using data up to the crack-tip). In addition, three-dimensional finite element (FE) analyses (using the simulated weld residual stress) were conducted to serve as a reference solution. The results of this study demonstrate the potential sensitivity of stress intensity factors to 4th order polynomial fitting artifacts. The piece-wise WRS representations used in the UWFM was not sensitive to these fitting artifacts and the UWFM solutions were in good agreement with the FE results.


1993 ◽  
Vol 46 (11S) ◽  
pp. S29-S40 ◽  
Author(s):  
C. W. Smith

Following a brief introduction of the concept of stress intensity factor from fracture mechanics and the frozen stress method from photoelasticity, an algorithm is developed from fracture mechanics equations and the stress-optic law for converting stress fringe measurements into a form useful for determining the stress intensity factor. This algorithm covers all three local modes of deformation and is used to analyse frozen stress slices along the border of cracks to obtain distributions for stress intensity factors K1, K2 and K3. The use of the method is illustrated by three examples from practical engineering problems and results are compared with the literature where possible.


Sign in / Sign up

Export Citation Format

Share Document