Optimal Control of Turbine Engines

1979 ◽  
Vol 101 (2) ◽  
pp. 117-126 ◽  
Author(s):  
R. L. DeHoff ◽  
W. Earl Hall

Multivariable control design for turbine engines has been studied for over 20 years. In the last 10 years, the application of linear, optimal design techniques has produced a number of turbine engine controllers. A group of these design procedures is described and a discussion of the procedures’ performance, complexity and implementation is presented. The design of a full-envelope controller for the F100 turbofan engine based on linear, optimal synthesis and locally linear modeling techniques is discussed. A perspective of optimal control design for turbine engines is presented and the future is examined.

Author(s):  
Stephen R. Watts ◽  
Sanjay Garg

This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H–Infinity (H∞) synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop de-coupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Sign in / Sign up

Export Citation Format

Share Document