Design, Development and Application of Vehicle Gas Turbine Engines

Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.

Author(s):  
A. Carelli

The experience acquired in developing an automotive gas-turbine engine is traced. Problems of design, construction, and development unique to a small gas-turbine engine and its application to an automobile are discussed. The engine performance and operational characteristics are then described. Finally, there is a discussion of the problems that must be solved before gas-turbine engines may successfully compete with reciprocating engines in automotive road transport.


Author(s):  
James Anthony Kluka ◽  
David Gordon Wilson

One of the significant problems plaguing regenerator designs is seal leakage resulting in a reduction of thermal efficiency. This paper describes the preliminary design and analysis of a new regenerative heat-exchanger concept, called a modular regenerator, that promises to provide improved seal-leakage performance. The modular regenerator concept consists of a ceramic-honeycomb matrix discretized into rectangular blocks, called modules. Separating the matrix into modules substantially reduces the transverse sealing lengths and substantially increases the longitudinal sealing lengths as compared with typical rotary designs. Potential applications can range from small gas-turbine engines for automotive applications to large stationary gas turbines for industrial power generation. Descriptions of two types of modular regenerators are presented including sealing concepts. Results of seal leakage analysis for typical modular regenerators sized for a small gas-turbine engine (120 kW) predict leakage rates under one percent for most seal-clearance heights.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Aviation ◽  
2013 ◽  
Vol 17 (2) ◽  
pp. 52-56 ◽  
Author(s):  
Mykola Kulyk ◽  
Sergiy Dmitriev ◽  
Oleksandr Yakushenko ◽  
Oleksandr Popov

A method of obtaining test and training data sets has been developed. These sets are intended for training a static neural network to recognise individual and double defects in the air-gas path units of a gas-turbine engine. These data are obtained by using operational process parameters of the air-gas path of a bypass turbofan engine. The method allows sets that can project some changes in the technical conditions of a gas-turbine engine to be received, taking into account errors that occur in the measurement of the gas-dynamic parameters of the air-gas path. The operation of the engine in a wide range of modes should also be taken into account.


Author(s):  
M. A. Monroe ◽  
A. H. Epstein ◽  
H. Kumakura ◽  
K. Isomura

The performance of a regenerated gas turbine generator in the 3–5 kW power range has been analyzed to understand why its measured efficiency was on the order of 6% rather than the 20% suggested by consideration of its components’ efficiencies as measured on rigs. This research suggests that this discrepancy can be primarily attributed to heat and fluid leaks not normally considered in the analysis of large gas turbine engines because they are not as important at large scale. In particular, fluid leaks among the components and heat leakage from the hot section into the compressor flow path contributed the largest debits to the engine performance. Such factors can become more important as the engine size is reduced. Other non-ideal effects reducing engine performance include temperature flow distortion at the entrance to both the compressor and turbine. A cycle calculation including all of the above effects matched measured engine data. It suggests that relatively simple changes such as thermal isolation and leak sealing can increase both power output and efficiency of this engine, over 225% in the latter case. The validity of this analysis was demonstrated on an engine in which partial thermal isolation and improved sealing resulted in a more than 40% increase in engine output power.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji

There are numerous gas turbine applications in power generation and mechanical drive service where power drop during the periods of high ambient temperature has a very detrimental effect on the production of power or process throughput. Several geographical locations experience very high temperatures with low coincident relative humidities. In such cases media evaporative cooling can be effectively applied as a low cost power augmentation technique. Several misconceptions exist regarding their applicability to evaporative cooling, the most prevalent being that they can only be applied in extremely dry regions. This paper provides a detailed treatment of media evaporative cooling, discussing aspects that would be of value to an end user, including selection of climatic design points, constructional features of evaporative coolers, thermodynamic aspects of its effect on gas turbines, and approaches to improve reliability. It is hoped that this paper will be of value to plant designers, engineering companies, and operating companies that are considering the use of media evaporative cooling.


2019 ◽  
pp. 39-44
Author(s):  
Stanislav Fábry ◽  
Miroslav Spodniak ◽  
Peter Gašparovič ◽  
Peter Koščák

The paper deals with testing of aircraft gas turbine engines. The main goal of the research is to propose and design testing sequence for a new or rebuilt engine. All factors and circumstances are described, including surroundings of the engine under test. Prerequisite knowledge is introduced, including the theory of testing, description of test beds, the methods of measurement of engine parameters and special factors that affect engine performance. Some examples of real testing facilities are mentioned. The result of the work is a proposal of test cycle, that can be modified according to engine purpose and specification.


1970 ◽  
Author(s):  
N. K. H. Scholz

The effect of the main design parameters of the aero gas turbine engine cycle, namely combustion temperature and compression pressure ratio, on the specific performance values is discussed. The resulting development trend has been of essential influence on the technology. Relevant approaches are outlined. The efforts relating to weight and manufacturing expense are also indicated. In the design of aero gas turbine engines increasing consideration is given to the specific flight mission requirements, such as for instance by the introduction of the by-pass principle. Therefore direct application of aero gas turbine engines for ship propulsion without considerable modifications, as has been practiced in the past, is not considered very promising for the future. Nevertheless, there are possibilities to take advantage of aero gas turbine engine developments for ship propulsion systems. Appropriate approaches are discussed. With the experience obtained from aero gas turbine engines that will enter service in the early seventies it should be possible to develop marine gas turbine engines achieving consumptions and lifes that are competitive with those of advanced diesel units.


1989 ◽  
Vol 111 (1) ◽  
pp. 146-154 ◽  
Author(s):  
E. V. Zaretsky

Three decades of research by U.S. industry and government laboratories have produced a vast array of data related to the use of ceramic rolling-element bearings and bearing components for aircraft gas turbine engines. Materials such as alumina, silicon carbide, titanium carbide, silicon nitride, and a crystallized glass ceramic have been investigated. Rolling-element endurance tests and analysis of full-complement bearings have been performed. Materials and bearing design methods have improved continuously over the years. This paper reviews a wide range of data and analyses with emphasis on how early NASA contributions as well as more recent data can enable the engineer or metallurgist to determine just where ceramic bearings are most applicable for gas turbines.


Author(s):  
J. Walton ◽  
M. Martin

In this paper, results of experimental rotordynamic evaluations of a novel, high load chambered porous damper design, are presented. The chambered porous damper concept was evaluated for gas turbine engine application since this concept avoids the non-linearities associated with high eccentricity operation of conventional squeeze film dampers. The rotordynamic testing was conducted under large steady state imbalance and simulated transient bladeloss conditions for up to 0.254 mm (0.01 in) mass c.g offset or 180 gm-cm (2.5 oz-in) imbalance. The chambered porous damper demonstrated that the steady state imbalance and simulated bladeloss transient response of a flexible rotor operating above its first bending critical speed could be readily controlled. Rotor system imbalance sensitivity and logarithmic decrement are presented showing the characteristics of the system with the damper installed. The ability to accommodate high steady state and transient imbalance conditions make this damper well suited to a wide range of rotating machinery, including aircraft gas turbine engines.


Sign in / Sign up

Export Citation Format

Share Document