The Effect of Spacewise Lumping on the Solution Accuracy of the One-Dimensional Diffusion Equation

1962 ◽  
Vol 29 (4) ◽  
pp. 629-636 ◽  
Author(s):  
W. D. Murray ◽  
Fred Landis

Numerical or semidiscrete analog approximations to the diffusion equation must be formulated for solutions with automatic computing equipment. The present paper is devoted to the evaluation of truncation errors inherent in the spacewise difference formulation of the equation under general boundary conditions. A general method of analysis is developed and the error between the semidiscrete solution and the exact solution of the partial differential equations is evolved by matrix algebra and the Laplace transform. The method is illustrated by example showing the errors in the case of a symmetrically heated slab subject to temperature boundary conditions expressed as polynomials in time.

2018 ◽  
Vol 284 ◽  
pp. 1230-1234
Author(s):  
Mikhail V. Maisuradze ◽  
Alexandra A. Kuklina

The simplified algorithm of the numerical solution of the differential diffusion equation is presented. The solution is based on the one-dimensional diffusion model with the third kind boundary conditions and the finite difference method. The proposed approach allows for the quick and precise assessment of the carburizing process parameters – temperature and time.


A theory is presented for the behaviour under self-weight of inextensible but perfectly flexible membranes supported in a vertical plane. Slack in the membrane manifests itself in the formation of (curved) wrinkle lines whose determination is the prime objective. The equilibrium and strain conditions are derived and solutions are given for several simple cases. It is shown that the wrinkle lines satisfy the one-dimensional diffusion equation and hence there are analogies, for example, with heat flow through a slab.


2014 ◽  
Vol 16 (5) ◽  
pp. 1181-1200 ◽  
Author(s):  
Wakana Iwakami ◽  
Yuzuru Yatagai ◽  
Nozomu Hatakeyama ◽  
Yuji Hattori

AbstractA new approach for reducing error of the volume penalization method is proposed. The mask function is modified by shifting the interface between solid and fluid by toward the fluid region, where v and η are the viscosity and the permeability, respectively. The shift length is derived from the analytical solution of the one-dimensional diffusion equation with a penalization term. The effect of the error reduction is verified numerically for the one-dimensional diffusion equation, Burgers’ equation, and the two-dimensional Navier-Stokes equations. The results show that the numerical error is reduced except in the vicinity of the interface showing overall second-order accuracy, while it converges to a non-zero constant value as the number of grid points increases for the original mask function. However, the new approach is effectivewhen the grid resolution is sufficiently high so that the boundary layer,whose width is proportional to , is resolved. Hence, the approach should be used when an appropriate combination of ν and η is chosen with a given numerical grid.


Sign in / Sign up

Export Citation Format

Share Document