A New Multiaxial Fatigue Life Prediction Model Under Proportional and Nonproportional Loading

Author(s):  
Jing Li ◽  
Qiang Sun ◽  
Zhong-Ping Zhang ◽  
Chun-Wang Li ◽  
Dong-Wei Zhang

Based on the critical plane approach, the drawbacks of the Wang–Brown (WB) model are analyzed. It is discovered that the normal strain excursion in the WB model cannot account for the additional cyclic hardening well. In order to solve this problem, a new damage parameter for multiaxial fatigue is proposed. In the meantime, the procedure for multiaxial fatigue life assessment incorporating critical plane damage model is presented as well. In the new damage parameter, both strain and stress components are considered, and the effect of the additional cyclic hardening on the fatigue life during nonproportional loading is taken into account as well. In addition, the proposed model is modified when the mean stress is existence. It is convenient for engineering application because of no material constants in this parameter. The capability of fatigue life assessment for the proposed fatigue damage model is checked against the experimental data found in literature for tubular specimens of 1045HR steel, hot-rolled 45 steel, S460N steel, GH4169 alloy at elevated temperature, and the notched shaft of SAE 1045 steel, which is under cyclic bending and torsion loading. It is demonstrated that the proposed criterion gives satisfactory results for all the five checked materials.

2014 ◽  
Vol 224 ◽  
pp. 15-20
Author(s):  
Łukasz Pejkowski ◽  
Dariusz Skibicki

Stress invariants approach to the multiaxial fatigue life estimation is generally based on the root mean square value of second invariant of the deviatoric stress amplitude and the value of hydrostatic stress. Such an approach omits a significant part of the information about multiaxial load history. It is particularly noticeable in case of non-proportional loadings, which lead to a reduction of fatigue life (i.e. [1–3]). In this work a new method based on the mean value of modified second invariant of the deviatoric stress has been presented.


2011 ◽  
Vol 295-297 ◽  
pp. 2314-2320
Author(s):  
Peng Min Lv ◽  
Chun Juan Shi

The tension-torsion thin walled tube specimens were used as the researching object in this paper. The method of determination to the critical plane which has the maximum normal strain and maximum shear strain was expounded. The strain state on the critical plane under non-proportional loading was analyzed, and the unified prediction model was used to calculate the fatigue life. In order to research the influence of phase difference on fatigue life under the non-proportional loading, the relation of the equivalent strain and the phase difference in different positive strain amplitude and different strain amplitude ratio were analyzed. It’s found that the dangerous phase difference which has the shortest fatigue life is in direct relation with the strain amplitude ratio. The general formula of dangerous phase difference is presented. Through the material mechanics performance and fatigue parameters of uniaxial stress state, the coefficients in the formula can be obtained and the coefficients of 15 kinds of common materials are given for practical application.


Sign in / Sign up

Export Citation Format

Share Document