multiaxial fatigue
Recently Published Documents


TOTAL DOCUMENTS

976
(FIVE YEARS 217)

H-INDEX

58
(FIVE YEARS 9)

Author(s):  
Mikkel Løvenskjold Larsen ◽  
Jörg Baumgartner ◽  
Henrik Bisgaard Clausen ◽  
Vikas Arora

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 196
Author(s):  
Paweł J. Romanowicz ◽  
Dariusz Smolarski ◽  
Marek S. Kozień

A new approach based on the direct spectral method for fatigue analysis of elements subjected to bimodal stress histories, including high compression effects, is proposed. A correction factor, taking into account the influence of the mean compressive stresses, is used in the proposed method. Equivalent amplitude is estimated, based on criteria proposed by Smith, Watson, and Tooper, and by Bergmann and Seeger. The method is presented with example of a thrust roller bearing. Two cases in which the rollers were subjected to constant force 206 N (where constant amplitude stresses occurred in the rollers) and cyclic force (where bimodal stresses with variable amplitudes occurred in the rollers) are studied. It is observed that multiaxial fatigue criteria (Crossland, Papadopoulos) do not include the influence of bimodal stresses and should not be used for such loading conditions. The proposed method includes both kinds of stress waveforms in the fatigue analysis and can be applied for the accurate identification of stress components and the determination of fatigue life. The damage rate calculated by the proposed approach for rollers subjected to a cyclic force (equivalent load equal to 151 N) was 0.86, which is in good agreement with the recommendations provided in the literature. The obtained accuracy of the proposed method is above 95%.


2021 ◽  
Vol 16 (59) ◽  
pp. 525-536
Author(s):  
Daniele Rigon ◽  
Filippo Berto ◽  
Giovanni Meneghetti

The work deals with the analysis of the multiaxial fatigue damage of a C45 steel and its relationship with the thermal energy dissipation used in the last decades to estimate the uniaxial fatigue behavior of metals. For this purpose, thin-walled samples made of quenched and tempered C45 steel were tested under completely reversed combined axial and torsional cyclic loadings with different biaxiality ratios and phase-shift angles. The analyses of the crack paths at the initiation of the failure were performed after a 50% of stiffness loss that corresponded to a crack size ranging from 10 to 20 mm; afterwards, the characteristic crack paths of each loading condition were analysed by using a digital microscope to identify the direction of the crack at the initiation. The fatigue crack initiation points were inspected using a Scanning Electron Microscope after having broken under static tensile loading all specimens previously tested under fatigue. The specific heat loss per cycle was measured during the fatigue tests by applying the cooling gradient technique. Nevertheless, the fatigue damages observed are dependent on the load condition, the Q parameter was able to collapse all the axial, torsional and multiaxial fatigue test results in a sole scatter band


2021 ◽  
Vol 9 (12) ◽  
pp. 1433
Author(s):  
Hamid Abdollahnia ◽  
Mohammad Hadi Alizadeh Elizei ◽  
Kazem Reza Kashyzadeh

In the present study, the authors attempted to predict the fatigue lifetime of a real-scale integral concrete bridge with H-shaped steel piles resulting from working and environmental conditions. In this regard, various types of nonproportional variable amplitude loads were applied on the bridge, such as temperature variations and sea waves clash. To this end, CATIA software was used to model the real-scale bridge with its accessories, such as a concrete deck, concrete anchors (walls), I-shaped concrete beams (Ribs), and steel piles. Subsequently, stress analysis was performed to determine the critical area apt to fail. The results showed that steel piles are the most critical bridge components. As a result, in future analysis, the purpose will be to study this critical area, and the effect of relative humidity on the fatigue properties of concrete was ignored. Subsequently, the time history of stress tensor components in the critical area was obtained by performing transient dynamic analysis. Various well-known equivalent stress fatigue theories (von Mises, Findley, Dang Van, McDiarmid, Carpinteri–Spagnoli, Modified Findley, Modified McDiarmid, and Liu–Zenner) were utilized to calculate the equivalent stress caused by the simultaneous effect of temperature variations and sea waves clash. Eventually, the fatigue life of the structure was predicted by employing the rainflow counting algorithm and the Palmgren–Miner damage accumulation rule. The results indicated a reduction in the multiaxial fatigue life of the structure under the simultaneous effects of two phenomena, the daily temperature variations and the sea waves clash, of approximately 87% and 66%, respectively, compared with the fatigue life of the structure under either the effect of temperature changes or the effect of sea waves clash, separately. Therefore, it was necessary to consider all the cyclic loads in the structural design step to estimate the fatigue life of the structure. Moreover, the findings of this case study revealed that the lowest value of multiaxial fatigue lifetime is related to the application of the Liu-Zenner criterion. In other words, this criterion is more conservative than the other used criteria.


Sign in / Sign up

Export Citation Format

Share Document