cyclic hardening
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 62)

H-INDEX

38
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5279
Author(s):  
Arkadiusz Bednarz ◽  
Wojciech Zbigniew Misiolek

The work presents the results of numerical fatigue analysis of a turbine engine compressor blade, taking into account the values of initial stresses resulting from surface treatment-shot-peening. The values of the residual stresses were estimated experimentally using X-ray diffraction. The paper specifies the values of the residual stresses on both sides of the blade and their reduction due to cutting through the blade-relaxation. The obtained values of the residual stresses were used as initial stresses in the numerical fatigue analysis of the damaged compressor blade, which was subjected to resonant vibrations of known amplitude. Numerical fatigue ε-N life analysis was based on several fatigue material models: Manson’s, Mitchell’s, Baumel-Seeger’s, Muralidharan-Manson’s, Ong’s, Roessle-Fatemi’s, and Median’s, and also on the three models of cyclic hardening: Manson’s, Xianxin’s, and Fatemi’s. Because of this approach, it was possible to determine the relationship between the selection of the fatigue material ε-N model and the cyclic hardening model on the results of the numerical fatigue analysis. Additionally, the calculated results were compared with the results of experimental research, which allowed for a substantive evaluation of the obtained results. These results are of great scientific and practical importance. The problem of determining the fatigue life of blades with defects operating under resonance vibrations is one of the original tasks in the field of fracture mechanics and experimental mechanics. The results obtained are of great importance in the aviation industry and can be used during engine maintenance and inspections to assess the suitability of blades with defects in terms of the needs of further work. This aspect of engineering maintenance is of great importance from the aircraft safety point of view.


Author(s):  
Arkadiusz Bednarz ◽  
Wojciech Z. Misiolek

The work presents the results of numerical fatigue analysis of a turbine engine compressor blade, taking into account the values of initial stresses resulting from surface treatment - shot-peening. The values of the residual stresses were estimated experimentally using X-ray diffraction. The paper specifies the values of the residual stresses on both sides of the blade and their reduction due to the cutting through the blade - relaxation. The obtained values of the residual stresses were used as initial stresses in the numerical fatigue analysis of the damaged compressor blade, which is subjected to resonant vibrations of known amplitude. Numerical fatigue ε-N life analysis was based on the several fatigue material models: Manson’s, Mitchell’s, Baumel-Seeger’s, Muralidharan-Manson’s, Ong’s, Roessle-Fatemi’s and Median’s, and also on the three models of cyclic hardening: Manson’s, Xianxin’s, and Fatemi’s. Because of this approach, it was possible to determine the relationship between the selection of the fatigue material ε-N model and the cyclic hardening model on the results of the numerical fatigue analysis. Additionally, the calculated results were compared with the results of experimental research, which allowed for a substantive evaluation of the obtained results. These results are of great scientific and practical importance. The problem of determining the fatigue life of blades with defects operating under resonance vibrations is one of the original tasks in the field of fracture mechanics and experimental mechanics. The results obtained are of great importance in the aviation industry and can be used during engine maintenance and inspections to assess the suitability of blades with defects in terms of the needs of further work. This aspect of engineering maintenance is of great importance from the aircraft safety point of view.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4118
Author(s):  
Juliusz Sołkowski ◽  
Jarosław Górszczyk ◽  
Konrad Malicki ◽  
Dariusz Kudła

The use of modern synthetic materials is an important element in the development of railway tracks. Their use is a response to the growing requirements regarding the durability of structures and environmental protection against traffic noise and vibrations. In this paper, the results of the laboratory tests of selected mechanical properties of cellular polyurethane (PUR) mats which are applied in tram and railway tracks are presented in this study. The aim of the research was to determine the effect of fatigue loading on the mechanical performance of polyurethane mats. A series of samples made of two types of materials with different pore structures were tested. Static and fatigue laboratory tests were carried out on a specially prepared test stand. The values of selected mechanical parameters (the vertical static bedding modulus, the vertical dynamic bedding modulus, and the loss factor) were evaluated. The results of laboratory tests and analyses showed a significant influence of high-cycle fatigue loading on the values of mechanical parameters of the tested mats, which were quantified as a result of the study. For both types of materials, the phenomenon of cyclic hardening was observed. Additionally, for one of the materials, an undesired dynamic creep phenomenon was observed. It was also shown that the pore structure of polyurethane influences the mechanical performance of the mats. Therefore, the findings of the research may have practical significance for the quality evaluation of such materials, especially in the context of their durability and mechanical stability under real loading conditions.


2021 ◽  
Author(s):  
Shutong Zhang ◽  
Sebastian Romo ◽  
Rafael Arthur Giorjao ◽  
Jorge Penso ◽  
Haixia Guo ◽  
...  

Abstract Low-cycle fatigue failure has been widely accepted as the key mechanism causing damages of coke drums during cyclic thermal-mechanical loadings. Common damages of coke drums known as bulging and cracking are associated with accumulative plasticity caused by thermal and mechanical strains. External repairs using temper-bead welding techniques are implemented to repair welds in the damaged areas of coke drums, which provide structural support to the vessels. Compared with matching filler metals, Ni-base fillers including alloy 625 and alloy 182 are compatible with both low-alloy steel base metal and internal clads in terms of weldability and thermal expansion. However, the differences of yield strengths and cyclic hardening behaviors of nickel-base alloys from base metals compromise the fatigue resistances of weld joints. In this study, alloy 182 and alloy 625 repair coupons were evaluated and compared based on isothermal low-cycle fatigue tests. Low-cycle fatigue behaviors of both weld metals and 1.25Cr-0.5Mo base metal were measured at 1.0%, 1.5% and 2.0% strain amplitudes. Test results indicate both nickel-base filler metals exhibit overmatching strength over the base metal due to cyclic hardening. Low-cycle fatigue tests of Heat Affected zone (HAZ) samples show the failures of alloy 625 weld joints occur in the base metal, while the failures of alloy 182 weld joints occur along the fusion boundary. The observations show strength mismatch and fatigue resistance are the key factors to determine failure locations of the joints. In addition, cyclic hardening coefficients based on kinematic hardening model were extracted from experimental data to simulate the cyclic behaviors of the weld joints. Finite element simulation results were shown to be consistent with experimental data at stabilized cycles. Cyclic behaviors of weld metal and base metal within a weld transition sample were calculated based on the numerical model.


2021 ◽  
Author(s):  
Zongyuan Zou ◽  
Doudou Liu ◽  
Shuting Han ◽  
Chunyan Song ◽  
Hongzhong Wang

Abstract The cyclic plastic characteristics of metal materials are different from the deformation characteristics under monotonic loading, which has an important effect on the safety of structures in service under cyclic loading. However, GS-20Mn5, which is commonly used in large hydraulic machine beams, offshore platforms and large Bridges, is still lacking the studies of mechanical response characteristics under cyclic loading. In this study, the cyclic softening/hardening characteristics of GS-20Mn5 are studied by a series of cyclic loading tests under uniaxial strain control. Combined with transmission electron microscope (TEM) analysis of cyclic loading tests under typical strain levels, the microscopic mechanism of cyclic softening/hardening is discussed. The results show that the cyclic softening/hardening properties of GS-20Mn5 cast steel are sensitive to amplitudes and cycles. At smaller strain amplitudes (0.16%,0.2% and 0.3%), the cyclic hardening properties of GS-20Mn5 cast steel are rapid at the beginning of the cycle, followed by cyclic softening and then slow secondary cyclic hardening at the end. However, under larger strain amplitudes (0.4% and 0.5%), the cyclic hardening continues during the cyclic loading, and the hardening rate is bigger at the beginning of the cyclic loading and smaller at the later cyclic stage. The cyclic softening/hardening characteristics of GS-20Mn5 cast steel are related to the dislocation structure of ferrite and pearlite. Taking the strain amplitude of 0.2% as an example, the initial cyclic hardening is mainly caused by the proliferation and interaction of dislocations in ferrite. Dislocation spots and cell walls in ferrite grains are mainly caused cyclic softening at the initial stage, the secondary cyclic hardening is directly related to dislocation proliferation and entanglement in pearlite.


Sign in / Sign up

Export Citation Format

Share Document