Direct Method to Maximize Net Power Output of Rankine Cycle in Low-Grade Thermal Energy Conversion

Author(s):  
Faming Sun ◽  
Yasuyuki Ikegami

Using ammonia as working fluid, enthalpy equations corresponding to every point in Rankine cycle for low-grade thermal energy conversion (LTEC) are presented by employing curve-fitting method. Analytical equations of Rankine cycle analysis are thus set up. In terms of temperatures of the evaporator and condenser, the equation related to Rankine cycle net power output is then achieved. Furthermore, by using theoretical optimization method, the results of the maximum net power output of a Rankine cycle in LTEC are also reported. This study extends the recent flurry of publications about Rankine cycle power optimization in LTEC, which modified the ideal Rankine cycle to a Carnot cycle by using an average entropic temperature to achieve the theoretical formulas. The proposed method can better reflect the performance of Rankine cycle in LTEC since the current work is mainly based on the direct simulations of every enthalpy points in Rankine cycle. Moreover, the proposed method in this paper is equally applicable for other working mediums, such as water and R134a.

Author(s):  
Yue Juan ◽  
Li Dashu ◽  
Li Zhichuan ◽  
Xiao Gang ◽  
Zhang Li ◽  
...  

Compared to the restriction of intermittency of solar power generation, ocean thermal energy conversion (OTEC) is not only 24/7 base-load, but also comprehensive utilization of fresh water production, air-conditioning, mariculture etc. However, limited temperature difference between warm surface seawater and the cold deep seawater is a crucial factor that restricts the thermal efficiency of OTEC. But today, with the appliance of solar collector in OTEC net power output and the net thermal efficiency have been significantly improved. In this study theoretical analysis and performance simulation of 1MW solar-ocean thermal energy conversion (SOTEC) in South China Sea area is conducted. Net power output and net thermal efficiency of SOTEC with solar-boosted temperature of 20K and OTEC under the condition of weather conditions in South China Sea are compared and analyzed. The results show that the net power output and net thermal efficiency of SOTEC have been significantly improved by combining the solar collector. This study is practical for autonomous supply of islands and coastal areas, and instructive for the comprehensive utilization of renewable energy.


Author(s):  
Ji Li ◽  
Zikang Zhang ◽  
Runze Zhao ◽  
Bo Zhang ◽  
Yunmin Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document