Fuzzy Sliding Mode Control of Rigid-Flexible Multibody Systems With Bounded Inputs

Author(s):  
Pinhas Ben-Tzvi ◽  
Shengjian Bai ◽  
Qingkun Zhou ◽  
Xinsheng Huang

This paper presents the dynamic modeling and fuzzy sliding mode control for rigid-flexible multibody systems. To investigate the dynamic stiffening of rigid-flexible systems, a first-order approximate model of a flexible spacecraft system is formulated by using Hamilton’s principles and assumed mode method, taking into account the second-order term of the coupling deformation field. For highly flexible structural models, ideal surface sliding that produces pure rigid body motion may not be achievable. In this paper, the discontinuity in the sliding mode controller is smoothed inside a thin boundary layer using fuzzy logic technique to reduce the chattering phenomenon efficiently. Sliding mode control is insensitive to parameter variations and provides complete rejection of disturbances, but these advantages only hold in the sliding mode domain. However, when the actuators’ amplitude is limited by their physical constraints, the sliding mode domain will be restricted to some local domain near zero on the switching surface. Control input saturation is also considered in the fuzzy sliding mode control approach. The new features and advantages of the proposed approach are the use of new dynamic equations for the motion of flexible spacecraft systems and the design of fuzzy sliding mode control by taking into account the control input saturation. The classical sliding mode control case is also developed for comparison. Numerical simulations are performed to validate the proposed methods and to demonstrate that rotational maneuvers and vibration suppression are accomplished in spite of the presence of model uncertainty and control saturation nonlinearity.

Author(s):  
Shengjian Bai ◽  
Pinhas Ben-Tzvi ◽  
Qingkun Zhou ◽  
Xinsheng Huang

This paper presents the dynamic modeling and fuzzy sliding mode control (FSMC) for a spacecraft with flexible appendages. A first-order approximate model (FOAM) of the flexible spacecraft system is formulated by using Hamilton’s principles and assumed mode method (AMM), taking into account the second-order term of the coupling deformation field. The use of classical Sliding Mode Control (SMC) presents a major problem that appears in the form of chattering. For highly flexible structural models, ideal sliding surface producing pure rigid body motion may not be achievable. In this paper, the discontinuity in the sliding mode controller is smoothened inside a thin boundary layer by using fuzzy logic (FL) techniques so that the chattering phenomenon is effectively reduced. The robustness of SMC only holds in the sliding mode domain (SMD). However, when the amplitude of the actuators is limited, SMD will be restricted to some local domain near zero on the switching surface. Control input saturation is also explicitly considered in the FSMC approach. The new features and advantages of the proposed approach are the use of new dynamic equations of motion of flexible spacecraft systems, and the design of FSMC by taking into account the control input saturation. To study the effectiveness of the corresponding control scheme, the classical SMC case is also developed for the control system. Numerical simulations are performed to show that rotational maneuvers and vibration suppression are accomplished in spite of the presence of disturbance torques, model uncertainty and control saturation nonlinearity.


2012 ◽  
Vol 226-228 ◽  
pp. 840-843 ◽  
Author(s):  
Sheng Bin Hu ◽  
Wen Hua Lu ◽  
Da Min Cao ◽  
Hai Rong Xu

To achieve high performance tracing control of the three-links spatial robot, a fast terminal fuzzy sliding mode control method is proposed in this paper. Firstly, the control method can efficiently solve the singularity of the controller through switching between terminal sliding mode surface and linear sliding mode surface. Secondly, to diminish the chattering in the control input, a fuzzy controller is designed to adjust the generalized gain of fast terminal fuzzy sliding mode controller according to fast terminal sliding mode surface. The stability of the control algorithm is verified by using Lyapunov theory. The proposed controller is then applied to the control of a three-links spatial robot. Simulation results show the validity of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document