Fast Terminal Fuzzy Sliding Mode Control for a Three-Links Spatial Robot

2012 ◽  
Vol 226-228 ◽  
pp. 840-843 ◽  
Author(s):  
Sheng Bin Hu ◽  
Wen Hua Lu ◽  
Da Min Cao ◽  
Hai Rong Xu

To achieve high performance tracing control of the three-links spatial robot, a fast terminal fuzzy sliding mode control method is proposed in this paper. Firstly, the control method can efficiently solve the singularity of the controller through switching between terminal sliding mode surface and linear sliding mode surface. Secondly, to diminish the chattering in the control input, a fuzzy controller is designed to adjust the generalized gain of fast terminal fuzzy sliding mode controller according to fast terminal sliding mode surface. The stability of the control algorithm is verified by using Lyapunov theory. The proposed controller is then applied to the control of a three-links spatial robot. Simulation results show the validity of the proposed control scheme.

Author(s):  
M. Roopaei ◽  
M. J. Zolghadri ◽  
B. S. Ranjbar ◽  
S. H. Mousavi ◽  
H. Adloo ◽  
...  

In this chapter, three methods for synchronizing of two chaotic gyros in the presence of uncertainties, external disturbances and dead-zone nonlinearity are studied. In the first method, there is dead-zone nonlinearity in the control input, which limits the performance of accurate control methods. The effects of this nonlinearity will be attenuated using a fuzzy parameter approximator integrated with sliding mode control method. In order to overcome the synchronization problem for a class of unknown nonlinear chaotic gyros a robust adaptive fuzzy sliding mode control scheme is proposed in the second method. In the last method, two different gyro systems have been considered and a fuzzy controller is proposed to eliminate chattering phenomena during the reaching phase of sliding mode control. Simulation results are also provided to illustrate the effectiveness of the proposed methods.


2013 ◽  
Vol 655-657 ◽  
pp. 1048-1052
Author(s):  
Sheng Bin Hu ◽  
Wen Hua Lu ◽  
Xing Yuan Zhang ◽  
Hai Rong Xu ◽  
Da Min Cao

To achieve high performance tracing control of the three-links spatial robot, a nonsingular terminal fuzzy sliding mode control method is proposed in this paper. Firstly, the control method can efficiently avoid the singularity of the generally terminal sliding mode controller through designing nonsingular terminal sliding mode surface. Secondly, to diminish the chattering in the control input, a fuzzy controller is designed to adjust the gain of nonsingular terminal sliding mode controller according to the normal of nonsingular terminal sliding mode surface. The stability of the control scheme is verified by using Lyapunov theory. The proposed controller is then applied to the control of a three-links spatial robot. Simulation results show the validity of the proposed control scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Shuang Huang ◽  
Xin Wu ◽  
Peixing Li

The yarn vibration causes the yarn tension value to fluctuate, causing a change in the amount of yarn feed, thus causing a deviation of the carpet pile height from the predetermined value. To solve this problem, the sliding mode control algorithm is used to design the sliding mode function and the sliding mode control law. And four variables in the yarn vibration system are controlled by the MATLAB software. For solving the chattering problem of the control law, the sliding mode control law is improved. The fuzzy sliding mode control algorithm based on the quasisliding mode is adopted. The results show that the sliding mode control algorithm is effective, but the sliding mode control force needs to be switched at high frequency and there is severe chattering. The fuzzy sliding mode control algorithm based on quasisliding mode is adopted to achieve better control effect with a smaller force. In addition, the control force does not have high-frequency switching, and the change is relatively stable, which reduces the chattering phenomenon of sliding mode control.


2012 ◽  
Vol 468-471 ◽  
pp. 704-707
Author(s):  
Sheng Bin Hu ◽  
Wen Hua Lu ◽  
Zhi Yi Chen ◽  
Lei Lei ◽  
Yi Xuan Zhang

An adaptive Double Fuzzy Sliding Mode Control scheme for attitude control of Flapping Wing Micro Aerial Vehicle is proposed in this paper. Based on the feedback linearization technique, a sliding mode controller is designed. To faster response speed, a fuzzy controller is designed to adaptively tune the slope of sliding mode surface. To reduce the chattering, another fuzzy controller is designed to adaptively tune the switch part of sliding mode control. The system stability is proved by Lyapunov principle. Simulation results show that the proposed control scheme is effective.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wende Zhao ◽  
Decheng Wang ◽  
Zhenzhong Chu ◽  
Mingjun Zhang

This paper investigates the control problem of the buoyancy regulation system for autonomous underwater vehicle (AUV). There are some problems to be considered in the oil-water conversion-based buoyancy regulation system, including the external seawater pressure, the pressure fluctuations, and the slow switching speed of the ball valve. The control accuracy of the buoyancy regulation under the traditional PID controller cannot meet the requirements of the project. In this paper, a fuzzy sliding mode control scheme is developed for the buoyancy regulation system to solve the abovementioned problems. At first, a mathematical model of the buoyancy regulation system is established, and the stability of the system is analyzed. Then, the sliding mode control algorithm is combined with the fuzzy system to improve the control accuracy. Finally, the pool-experiment results on a prototype show that the developed control scheme can meet the requirements of the control accuracy for the buoyancy regulation system.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1658 ◽  
Author(s):  
Zhanmin Zhou ◽  
Bao Zhang ◽  
Dapeng Mao

In this paper, a MIMO (Multi-Input Multi-Output) fuzzy sliding mode control method is proposed for a three-axis inertially stabilized platform. This method is based on the MIMO coupling model of the three-axis inertially stabilized platform in which the dynamic coupling among the three frames, namely the azimuth frame, the pitch frame and the roll frame, is fully considered. Firstly, the dynamic equation of the three-axis inertially stabilized platform is analyzed and its linearized model is obtained. After this, the controller is designed based on the model, during which fuzzy logic is introduced to deal with the frame coupling and the adaptive fuzzy coupling compensation factor is designed to be part of the algorithm. A complete proof of the stability and convergence is also provided in this paper. Finally, the performance of the platform with a MIMO fuzzy sliding mode controller and PI controller is analyzed. The simulation results show that the proposed scheme can guarantee tracking accuracy and effectively suppress the coupling interference between the three frames.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Junhai Luo ◽  
Heng Liu

This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.


2013 ◽  
Vol 278-280 ◽  
pp. 1593-1600 ◽  
Author(s):  
Chao Liu ◽  
Sheng Jing Tang ◽  
Sheng Yi Yang ◽  
Jie Guo

In order to ensure the quad-rotor can track moving targets or desire trajectory accurately and quickly when face external disturbance, sliding mode control is used to overcome the system uncertainties and external disturbances. A fuzzy controller is introduced to decrease the chattering and improve performance of the system. The simulation considering external disturbance is used to test the performance of the fuzzy sliding mode trajectory tracking controller and the result shows that the fuzzy sliding mode trajectory tracking controller is feasible.


Sign in / Sign up

Export Citation Format

Share Document