Analytical Predication of Complex Motion of a Ball in a Periodically Shaken Horizontal Impact Pair

Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, complex motions of a ball in the horizontal impact pair with a periodic excitation are studied analytically using the theory of discontinuous dynamical system. Analytical conditions for motion switching caused by impacts are developed, and generic mapping structures are introduced to describe different periodic and chaotic motions. Analytical prediction of complex periodic motion of the ball in the periodically shaken impact pair is completed, and the corresponding stability and bifurcation analysis are also carried out. Numerical illustrations of periodic and chaotic motions are given.

Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, the horizontal impact pair with a periodic excitation is studied from the theory of discontinuous dynamical system. Analytical conditions for motion switching are obtained. From generic mappings, analytical prediction of periodic motion is presented, and the corresponding stability and bifurcation analysis are carried out. Periodic and chaotic motions are illustrated numerically.


Author(s):  
Albert C. J. Luo ◽  
Mehul T. Patel

In this paper, the stability and bifurcation of periodic motions in periodically forced oscillator with multiple discontinuities is investigated. The generic mappings are introduced for the analytical prediction of periodic motions. Owing to the multiple discontinuous boundaries, the mapping structures for periodic motions are very complicated, which causes more difficulty to obtain periodic motions in such a dynamical system. The analytical prediction of complex periodic motions is carried out and verified numerically, and the corresponding stability and bifurcation analysis are performed. Due to page limitation, grazing and stick motions and chaos in this system will be investigated further.


Author(s):  
Albert C. J. Luo ◽  
Arun Rajendran

In this paper, the dynamic characteristics of a simplified van der Pol oscillator are investigated. From the theory of nonsmooth dynamics, the structures of periodic and chaotic motions for such an oscillator are developed via the mapping technique. The periodic motions with a certain mapping structures are predicted analytically for m-cycles with n-periods. Local stability and bifurcation analysis for such motions are carried out. The (m:n)-periodic motions are illustrated. The further investigation of the stable and unstable periodic motions in such a system should be completed. The chaotic motion based on the Levinson donuts should be further discussed.


Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

In this paper, periodic motions of a periodically forced, coupled van der Pol-Duffing oscillator are predicted analytically. The coupled van der Pol-Duffing oscillator is discretized for the discrete mapping. The periodic motions in such a coupled van der Pol-Duffing oscillator are obtained from specified mapping structures, and the corresponding stability and bifurcation analysis are carried out by eigenvalue analysis. Based on the analytical prediction, the initial conditions of periodic motions are used for numerical simulations.


Author(s):  
Albert C. J. Luo ◽  
Siyuan Xing

In this paper, periodic motions in a periodically forced, damped, quadratic nonlinear oscillator with time-delayed displacement are analytically predicted through implicit discrete mappings. The implicit discrete maps are obtained from discretization of differential equation of such a quadratic nonlinear oscillator. From mapping structures, bifurcation trees of periodic motions are achieved analytically, and the corresponding stability and bifurcation analysis are completed through eigenvalue analysis. From the analytical prediction, numerical results of periodic motions are illustrated to verify such an analytical prediction.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, periodic motions of a periodically forced Duffing oscillator with double-well potential are analytically predicted through implicit discrete mappings. The implicit discrete maps are obtained from discretization of differential equation of the Duffing oscillator. From mapping structures, bifurcation trees of periodic motions are predicted analytically, and the corresponding stability and bifurcation analysis are carried out through eigenvalue analysis. From the analytical prediction, numerical results of periodic motions are performed to verify the analytical prediction.


Author(s):  
Albert C. J. Luo ◽  
Dennis O’Conner

Nonlinear dynamical behaviors of a train suspension system with impacts are investigated. The suspension system is described through an impact model with possible stick between a bolster and two wedges. The analytical conditions that reflect the motion mechanisms for the complex motion are given. The mapping structures for periodic and chaotic motions of such a system can be described. The analytical prediction of the complex motions can be conducted from the mapping structure, and numerical simulations for periodic and chaotic motions can be carried out in sequel.


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


2006 ◽  
Vol 129 (3) ◽  
pp. 276-284 ◽  
Author(s):  
Albert C. J. Luo ◽  
Lidi Chen

The grazing bifurcation and periodic motion switching of the harmonically forced, piecewise linear system with impacting are investigated. The generic mappings relative to the discontinuous boundaries of this piecewise system are introduced. Based on such mappings, the corresponding grazing conditions are obtained. The mapping structures are developed for the analytical prediction of periodic motions in such a system. The local stability and bifurcation conditions for specified periodic motions are obtained. The regular and grazing, periodic motions are illustrated. The grazing is the origin of the periodic motion switching for this system. Such a grazing bifurcation cannot be estimated through the local stability analysis. This model is applicable to prediction of periodic motions in nonlinear dynamics of gear transmission systems.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, the bifurcation trees of a periodically excited pendulum are investigated. Implicit discrete maps for such a pendulum are developed to construct discrete mapping structures. Bifurcation trees of the corresponding periodic motions are predicted semi-analytically through the discrete mapping structure. The corresponding stability and bifurcation analysis are carried out through eigenvalue analysis. Finally, numerical illustrations of various periodic motions are given to verify the analytical prediction. The accurate periodic motions in the periodically forced pendulum are predicted for the first time through the implicit mapping systems, and the corresponding bifurcation trees of periodic motion to chaos are obtained.


Sign in / Sign up

Export Citation Format

Share Document