Volume 4B: Dynamics, Vibration, and Control
Latest Publications


TOTAL DOCUMENTS

73
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791850558

Author(s):  
Nathaniel Steinbock ◽  
Laura Prange ◽  
Brian C. Fabien

Emergency lane changes are often the best course of action when avoiding obstacles on the road, but this maneuver has the possibility of sending the vehicle out of control. The University of Washington EcoCAR team has a hybrid-electric vehicle outfitted with an electric drivetrain and variable torque control to each of the rear wheels. Each rear wheel has an electric motor that is independently controlled to provide torque to the wheel. A lateral vehicle dynamics model is used to develop a torque control strategy to improve the safety and maneuverability of a modified hybrid-electric 2016 Camaro as part of the EcoCAR 3 competition. The specific scenario simulated is a two-lane lane change at a speed of 55 mph. We would like to increase the yaw and lateral accelerations that the vehicle can perform safely by controlling differing torques out of the two motors. Regulating these accelerations requires a control strategy over the left and right motor torques. Equal-torque control of the electric motors will be used as a baseline.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, galloping vibrations of a lightly iced transmission line are investigated through a two-degree-of-freedom (2-DOF) nonlinear oscillator. The 2-DOF nonlinear oscillator is used to describe the transverse and torsional motions of the galloping cables. The analytical solutions of periodic motions of galloping cables are presented through generalized harmonic balanced method. The analytical solutions of periodic motions for the galloping cable are compared with the numerical solutions, and the corresponding stability and bifurcation of periodic motions are analyzed by the eigenvalues analysis. To demonstrate the accuracy of the analytical solutions of periodic motions, the harmonic amplitudes are presented. This investigation will help one better understand galloping mechanism of iced transmission lines.


Author(s):  
Sudhir Kaul

Models of vibration isolators are very commonly used for the design and analysis of isolation systems. Accurate isolator modeling is critical for a successful prediction of the dynamic characteristics of isolated systems. Isolators exhibit a complex behavior that depends on multiple parameters such as frequency, displacement amplitude, temperature and loading conditions. Therefore, it is important to choose a model that is accurate while adequately representing the relationships with relevant parameters. Recent literature has indicated some inherent advantages of fractional derivatives that can be exploited in the modeling of elastomeric isolators. Furthermore, time delay of damping is also seen to provide a realistic representation of damping. This paper examines the Maxwell-Voigt model with fractional damping and a time delay. This model is compared with the conventional Maxwell-Voigt model (without time delay or fractional damping) and the Voigt model in order to comprehend the influence of fractional damping and time delay on dynamic characteristics. Multiple simulations are performed after identifying model parameters from the data collected for a passive elastomeric isolator. The analysis results are compared and it is observed that the Voigt model is highly sensitive to fractional damping as well as time delay.


Author(s):  
Chi-Wei Kuo ◽  
C. Steve Suh

A novel time-frequency nonlinear scheme demonstrated to be feasible for the control of dynamic instability including bifurcation, non-autonomous time-delay feedback oscillators, and route-to-chaos in many nonlinear systems is applied to the control of a time-delayed system. The control scheme features wavelet adaptive filters for simultaneous time-frequency resolution. Specifically Discrete Wavelet transform (DWT) is used to address the nonstationary nature of a chaotic system. The concept of active noise control is also adopted. The scheme applied the filter-x least mean square (FXLMS) algorithm which promotes convergence speed and increases performance. In the time-frequency control scheme, the FXLMS algorithm is modified by adding an adaptive filter to identify the system in real-time in order to construct a wavelet-based time-frequency controller capable of parallel on-line modeling. The scheme of such a construct, which possesses joint time-frequency resolution and embodies on-line FXLMS, is able to control non-autonomous, nonstationary system responses. Although the controller design is shown to successfully moderate the dynamic instability of the time-delay feedback oscillator and unconditionally warrant a limit cycle, parameters are required to be optimized. In this paper, the setting of the control parameters such as control time step, sampling rate, wavelet filter vector, and step size are studied and optimized to control a time-delay feedback oscillators of a nonautonomous type. The time-delayed oscillators have been applied in a broad set of fields including sensor design, manufacturing, and machine dynamics, but they can be easily perturbed to exhibit complex dynamical responses even with a small perturbation from the time-delay feedback. These responses for the system have a very negative impact on the stability, and thus output quality. Through employingfrequency-time control technique, the time responses of the time-delay feedback system to external disturbances are properly mitigated and the frequency responses are also suppressed, thus rendering the controlled responses quasi-periodic.


Author(s):  
Khaoula Chikhaoui ◽  
Diala Bitar ◽  
Najib Kacem ◽  
Noureddine Bouhaddi

In order to ensure more realistic design of nonlinear periodic structures, the collective dynamics of a coupled pendulums system is investigated under parametric uncertainties. A generic discrete analytical model combining the multiple scales method, the perturbation theory and a standing-wave decomposition is proposed and adapted to the presence of uncertainties. These uncertainties are taken into account through a probabilistic modeling implying that the stochastic parameters vary according to random variables of chosen probability density functions. The proposed model leads to a set of coupled complex algebraic equations written according to the number and positions of the uncertainties in the structure and numerically solved using the time integration Runge-Kutta method. The uncertainty propagation through the established model is finally ensured using the Latin Hypercube Sampling method. The analysis of the dispersion, in term of variability of the frequency and amplitude intervals of the multistability domain shows the effects of uncertainties on the stability and nonlinearity of a three coupled pendulums structure. The nonlinear aspect is strengthened, the multistability domain is wider, more stable branches are obtained and thus the multimode solutions are enhanced.


Author(s):  
Prabakaran Balasubramanian ◽  
Giovanni Ferrari ◽  
Zenon J. Guzman N. del Prado ◽  
Marco Amabili

In this paper, the large amplitude vibrations of clamped-clamped thin viscoelastic rectangular plates due to a concentrated transversal harmonic load are investigated both theoretically and experimentally. Clamped boundary condition on all edges and von Kármán nonlinear strain-displacement relationships are considered while rotary inertia, geometric imperfections, and shear deformation are neglected. In the theoretical study, the viscoelastic behaviour of the material is modelled using the Kelvin-Voigt model. In-plane loads applied during the assembly of the plate are taken into account and clamped boundary conditions are modelled using artificial rotational springs. The nonlinear ordinary differential equations for the considered Kelvin-Voigt model are obtained using the generalized energy approach. These equations contain quadratic and cubic nonlinear viscoelasticity terms in addition to quadratic and cubic stiffness terms. Non-dimensionalization of variables is carried out and each second order equation is converted into two first order equations. The resulting system of equations is solved using AUTO (software based on the arclength continuation method that allows bifurcation analysis), to get the frequency-response curves at various force levels. Moreover numerical time integration of equations was also performed using the fourth-order Runge-Kutta method to understand the time response of the structure. In the experimental study, two rubber plates with different material and thicknesses were considered; a silicone plate with 0.0015 m thickness and a neoprene plate with 0.003 m thickness. The plates were fixed on a heavy rectangular metal frame thereby ensuring the clamped boundary condition on all edges. Linear experimental modal analysis was carried out as a first step to estimate the mode shapes and natural frequencies. In the second step, the nonlinear vibration response of the plate around its first resonance was measured at various harmonic force levels. At each force level, the amplitude of the harmonic excitation was kept constant by LMS Data Acquisition System and Test.Lab Stepped Sine software module while slowly varying the frequency of excitation to get the frequency-response curves. Laser Doppler Vibrometry was used to measure the response from the plate as it eliminates the possible mass loading effect introduced by any contact type sensors. A maximum amplitude of more than three times the thickness of the plate was achieved. The nonlinear response curves showed a typical hardening type nonlinearity along with sudden jumps as expected for plates. Experimental frequency-response curves were compared with theoretical results and a good agreement was found. The influence of nonlinear viscoelastic damping terms was clearly noticed on the response curves of the plate. The retardation time, measured in seconds decreases with increasing excitation force and larger amplitude vibrations.


Author(s):  
Ethan Boroson ◽  
Samy Missoum

Nonlinear energy sinks (NESs) are promising devices for achieving passive vibration mitigation. Unlike traditional tuned mass dampers (TMDs), NESs, characterized by nonlinear stiffness properties, are not tuned to specific frequencies and absorb energy over a wider range of frequencies. NES efficiency is achieved through time-limited resonances, leading to the capture and dissipation of energy. However, the efficiency with which a NES dissipates energy is highly dependent on design parameters and loading conditions. In fact, it has been shown that a NES can exhibit a near-discontinuous efficiency. Thus, NES optimal design must account for uncertainty. The premise of the stochastic optimization method proposed is the segregation of efficiency regions separated by discontinuities in potentially high dimensional space. Clustering, support vector machine classification, and dedicated adaptive sampling constitute the basic techniques for maximizing the expected value of NES efficiency. Previous works depended solely on the ratio of energy dissipated by the NES for clustering. This work also includes information about the type of m:p resonances present. Three examples of optimization for the maximization of the expected value of efficiency for NESs subjected to transient loading are presented. The optimization accounts for both design variables with uncertainty and aleatory variables to characterize loading.


Author(s):  
Guan Wang ◽  
Hua Hu ◽  
Kang Wu ◽  
Lijun Wang

The laser interferometer is used to track the falling object in a freefall absolute gravimeter, which could be disturbed by the vibration from the ground. Thus, the vibration compensation method is often used to reduce the influence of the vibration. Typically, a sensor (broadband seismometer) is used to record the vibration. But the measured ‘vibration’ Nm(t) does not equal the motion of the reference corner cube N(t). Because there exists a transfer function G(s) making Nm(s) = G(s)N(s). Traditionally, G(s) is assumed to be equal to the transfer function of the sensor, which can be achieved with the help of other equipment. But the assumption is not reasonable and the process of calculating the transfer function is complicated. A novel vibration compensation method without any other equipment is proposed in this paper. In this method, G(s) is simplified to estimate N(t) using N′(t) = ANm(t − τ), which is used for compensation. The gain A and delay τ can be obtained by analysis of the data acquired by the absolute gravimeter. The experiments are conducted with the homemade absolute gravimeter T-1 and repeated for 75 times. The standard deviation of the uncompensated results is 3276 μGal (1 μGal = 1 × 10−8 m/s2), while that of the compensated results is 167 μGal. The compensation method not only achieves a reduction by nearly a factor of 20, but also can be simply used without any other equipment. The results indicate that the method basically meets the demands of absolute gravimeters. In the future, it may be applied to dynamic absolute gravity measurement and take the place of vibration isolators.


Author(s):  
Albert C. J. Luo ◽  
Siyuan Xing

In recent decades, nonlinear time-delay systems were often applied in controlling nonlinear systems, and the stability of such time-delay systems was very actively discussed. Recently, one was very interested in periodic motions in nonlinear time-delay systems. Especially, the semi-analytical solutions of periodic motions in time-delay systems are of great interest. From the semi-analytical solutions, the nonlinearity and complexity of periodic motions in the time-delay systems can be discussed. In this paper, time-delay effects on periodic motions of a periodically forced, damped, hardening, Duffing oscillator are analytically discussed through a semi-analytical method. The semi-analytical method is based on discretization of the differential equation of such a Duffing oscillator to obtain the corresponding implicit discrete mappings. Through such implicit mappings and mapping structures of periodic motions, period-1 motions varying with time-delay are discussed, and the corresponding stability and bifurcation analysis of periodic motions are carried out through eigenvalue analysis. Numerical results of periodic motions are illustrated to verify analytical predictions. The corresponding harmonic amplitude spectrums and harmonic phases are presented for a better understanding of periodic motions in such a nonlinear oscillator.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, the bifurcation trees of a periodically excited pendulum are investigated. Implicit discrete maps for such a pendulum are developed to construct discrete mapping structures. Bifurcation trees of the corresponding periodic motions are predicted semi-analytically through the discrete mapping structure. The corresponding stability and bifurcation analysis are carried out through eigenvalue analysis. Finally, numerical illustrations of various periodic motions are given to verify the analytical prediction. The accurate periodic motions in the periodically forced pendulum are predicted for the first time through the implicit mapping systems, and the corresponding bifurcation trees of periodic motion to chaos are obtained.


Sign in / Sign up

Export Citation Format

Share Document