Modeling of Impact in Multibody Systems: An Overview

Author(s):  
Y. A. Khulief

This paper appraises the current status of research devoted to the problem of modeling impact in multibody systems. The paper presents a focused, yet coherent overview of the problem of modeling impulsive motions initiated by impacts in multibody systems in light of the reported literature, while highlighting the key research accomplishments, unresolved problems, and pending challenges. The paper begins with a brief overview of the mechanics of contact in two-body collisions, and then proceeds to review different approaches for modeling the dynamics of impact in rigid multibody mechanical systems and multibody systems of interconnected rigid and flexible bodies. The review concludes by shedding light on some pertinent computational considerations.

Author(s):  
E. Bayo ◽  
J. M. Jimenez

Abstract We investigate in this paper the different approaches that can be derived from the use of the Hamiltonian or canonical equations of motion for constrained mechanical systems with the intention of responding to the question of whether the use of these equations leads to more efficient and stable numerical algorithms than those coming from acceleration based formalisms. In this process, we propose a new penalty based canonical description of the equations of motion of constrained mechanical systems. This technique leads to a reduced set of first order ordinary differential equations in terms of the canonical variables with no Lagrange’s multipliers involved in the equations. This method shows a clear advantage over the previously proposed acceleration based formulation, in terms of numerical efficiency. In addition, we examine the use of the canonical equations based on independent coordinates, and conclude that in this second case the use of the acceleration based formulation is more advantageous than the canonical counterpart.


Author(s):  
Henry T. Wu ◽  
Neel K. Mani

Abstract Vibration normal modes and static correction modes have been previously used to model flexible bodies for dynamic analysis of mechanical systems. The efficiency and accuracy of using these modes to model a system depends on both the flexibility of each body and the applied loads. This paper develops a generalized method for the generation of a set of Ritz vectors to model flexible bodies for dynamic analysis of multi-body mechanical systems. The Ritz vectors are generated using the distribution of dynamic loading on a flexible body. Therefore they form the most efficient vector basis for the spatial distribution of the loadings. The Ritz vectors can be re-generated when the system undergoes significant changes of its configuration and the regeneration procedure is inexpensive. The combinations of vibration normal modes and the proposed Ritz vectors thus form more efficient and accurate vector bases for the modeling of flexible bodies for dynamic analysis.


2001 ◽  
pp. 205-237 ◽  
Author(s):  
J. A. C. Ambrósio ◽  
M. Seabra Pereira ◽  
J. F. A. Milho

Sign in / Sign up

Export Citation Format

Share Document