scholarly journals Effect of Perturbing a Simulated Motion on Knee and Anterior Cruciate Ligament Kinetics

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Safa T. Herfat ◽  
Daniel V. Boguszewski ◽  
Rebecca J. Nesbitt ◽  
Jason T. Shearn

Current surgical treatments for common knee injuries do not restore the normal biomechanics. Among other factors, the abnormal biomechanics increases the susceptibility to the early onset of osteoarthritis. In pursuit of improving long term outcome, investigators must understand normal knee kinematics and corresponding joint and anterior cruciate ligament (ACL) kinetics during the activities of daily living. Our long term research goal is to measure in vivo joint motions for the ovine stifle model and later simulate these motions with a 6 degree of freedom (DOF) robot to measure the corresponding 3D kinetics of the knee and ACL-only joint. Unfortunately, the motion measurement and motion simulation technologies used for our project have associated errors. The objective of this study was to determine how motion measurement and motion recreation error affect knee and ACL-only joint kinetics by perturbing a simulated in vivo motion in each DOF and measuring the corresponding intact knee and ACL-only joint forces and moments. The normal starting position for the motion was perturbed in each degree of freedom by four levels (−0.50, −0.25, 0.25, and 0.50 mm or degrees). Only translational perturbations significantly affected the intact knee and ACL-only joint kinetics. The compression-distraction perturbation had the largest effect on intact knee forces and the anterior-posterior perturbation had the largest effect on the ACL forces. Small translational perturbations can significantly alter intact knee and ACL-only joint forces. Thus, translational motion measurement errors must be reduced to provide a more accurate representation of the intact knee and ACL kinetics. To account for the remaining motion measurement and recreation errors, an envelope of forces and moments should be reported. These force and moment ranges will provide valuable functional tissue engineering parameters (FTEPs) that can be used to design more effective ACL treatments.

2016 ◽  
Vol 7 (4) ◽  
pp. 3-8
Author(s):  
E A Zvezdkina ◽  
V N Lesnyak ◽  
A A Akhpashev ◽  
E A Dzhambinova ◽  
A S Kanaev

The use of bioresorbable materials in the anterior cruciate ligament reconstruction is a promising direction. Thus today there is no single point of view on the long-term results of using absorbable interference screws. The article presents an analysis of the results of surgical treatment of 30 patients with use of bioresorbable materials, operated on for rupture of the anterior cruciate ligament (ACL) in the department of traumatology and orthopedics from 2010 to 2016 in the Federal Scientific Clinical Center FMBA of Russia. The aim of our study was to evaluate in vivo transformation of bioresorbable screws and bone assimilation into the tibial canal in long-term period after surgery, as well as the effect of the polymeric material and bone on these processes.


Author(s):  
Amy Cochran ◽  
Yingxin Gao ◽  
Ursula Krotscheck ◽  
Margret Thompson ◽  
James Stouffer ◽  
...  

Optimal prevention and treatment strategies of anterior cruciate ligament (ACL) injury can be realized with a detailed understanding of how physiological factors impact the ACL. A noninvasive, in vivo method that assesses the ACL’s mechanical integrity is needed to help clarify this multi-factorial pathophysiology. We investigated the use of the noninvasive, in vivo technique, ultrasound strain elastography (USE) (1), to distinguish between normal and injured ACLs. USE is used as a diagnostic tool in oncological (2), hepatic (3), and cardiovascular (4) applications. This technique uses ultrasonic RF data to track tissue motion in order to estimate strain within the tissue.


2021 ◽  
pp. 036354652110032
Author(s):  
Daisuke Chiba ◽  
Tom Gale ◽  
Kyohei Nishida ◽  
Felipe Suntaxi ◽  
Bryson P. Lesniak ◽  
...  

Background: Lateral extra-articular tenodesis (LET) in combination with anterior cruciate ligament (ACL) reconstruction (ACLR) has been proposed to improve residual rotatory knee instability in patients having ACL deficiency. Purpose/Hypothesis: The purpose was to compare the effects of isolated ACLR (iACLR) versus LET in combination with ACLR (ACLR+LET) on in vivo kinematics during downhill running. It was hypothesized that ACLR+LET would reduce the internal rotation of the reconstructed knee in comparison with iACLR. Study Design: Controlled laboratory study. Methods: A total of 18 patients with ACL deficiency were included. All participants were randomly assigned to receive ACLR+ LET or iACLR during surgery. Six months and 12 months after surgery, knee joint motion during downhill running was measured using dynamic biplane radiography and a validated registration process that matched patient-specific 3-dimensional bone models to synchronized biplane radiographs. Anterior tibial translation (ATT; positive value means “anterior translation”) and tibial rotation (TR) relative to the femur were calculated for both knees. The side-to-side differences (SSDs) in kinematics were also calculated (operated knee–contralateral healthy knee). The SSD value was compared between ACLR+LET and iACLR groups using a Mann-Whitney U test. Results: At 6 months after surgery, the SSD of ATT in patients who had undergone ACLR+LET (–1.9 ± 2.0 mm) was significantly greater than that in patients who had undergone iACLR (0.9 ± 2.3 mm) at 0% of the gait cycle (foot strike) ( P = .031). There was no difference in ATT 12 months after surgery. Regarding TR, there were no differences between ACLR+LET and iACLR at either 6 months ( P value range, .161-.605) or 12 months ( P value range, .083-.279) after surgery. Conclusion: LET in combination with ACLR significantly reduced ATT at the instant of foot strike during downhill running at 6 months after surgery. However, this effect was not significant at 12 months after surgery. The addition of LET to ACLR had no effect on TR at both 6 and 12 months after surgery. Clinical Relevance: LET in combination with ACLR may stabilize sagittal knee motion during downhill running in the early postoperation phase, but according to this study, it has no effect on 12-month in vivo kinematics. Registration: NCT02913404 ( ClinicalTrials.gov identifier)


2001 ◽  
Vol 29 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Bruce D. Beynnon ◽  
Benjamin S. Uh ◽  
Robert J. Johnson ◽  
Braden C. Fleming ◽  
Per A. Renström ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document