graft tension
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shijun Wei ◽  
Dongsheng Fan ◽  
Fang Han ◽  
Ming Tang ◽  
Changwang Kong ◽  
...  

Abstract Background Minimally invasive reconstruction techniques are used for anatomical ligament construction of the lateral collateral ligament complex of the ankle, but the two key elements, the bone tunnel and the appropriate graft tension, for the identification of the anatomic location during the surgery are not clearly stated. Methods The patients with chronic ankle instability who received arthroscopic anatomic lateral ligament complex reconstruction were retrospectively analyzed. The anatomical location of the bone tunnel was performed under arthroscopy combined with fluoroscopy for accurate location of the bone tunnel entrance. The graft tension and routing were controlled under arthroscopic visualization. The clinical outcomes were assessed using the Karlsson-Peterson score, Sefton articular stability scale, and Visual Analogue Scale (VAS). The complications were recorded during the follow-up. Results A total of 18 patients were enrolled in this study. The mean follow-up was 33.33 ± 3.69 (range from 24 to 36) months. No patient had recurrence of ankle instability after the operation. According to the Sefton articular stability scale, 94.5% of the patients had excellent/good function. The mean value of the anterior drawer tests and the talar tilt angle examination were decreased. The mean of the Karlsson-Peterson score and the Visual Analogue Scale(VAS) score were both improved significantly. Conclusions The anatomic reconstruction of the ankle lateral ligament complex to treat chronic ankle instability using the arthroscopy combined with the fluoroscopic technique could improve the clinical functions, satisfaction, and reduced pain of patients.


2021 ◽  
Vol 49 (5) ◽  
pp. 1286-1295
Author(s):  
Wenhan Huang ◽  
Michael Tim-Yun Ong ◽  
Gene Chi-Wai Man ◽  
Yang Liu ◽  
Lawrence Chun-Man Lau ◽  
...  

Background: Inappropriate posterior tibial loading and initial graft tension during anterior cruciate ligament (ACL) reconstruction may cause altered patellofemoral joint (PFJ) contact mechanics, potentially resulting in pain and joint degeneration. Hypothesis: PFJ contact pressure would increase with the increases in posterior tibial loading and graft tension during ACL reconstruction. Study Design: Controlled laboratory study. Methods: Nine fresh-frozen, nonpaired human cadaveric knees were tested in a customized jig from 0° to 120° of knee flexion. First, the knee was tested in the ACL-intact state. Second, reconstruction of the ACLs using different posterior tibial loadings and graft tensions were performed. The posterior tibial loading was evaluated at 2 levels: 33.5 and 67 N. Graft tension was assessed at 3 levels: low tension (20 N), medium tension (60 N), and high tension (80 N). Maximum values of peak contact pressure in the medial and lateral patellar facets were compared between ACL-intact and ACL-reconstructed knees. The PFJ kinematics between ACL-intact knees and ACL-reconstructed knees were compared during knee flexion at 30°, 60°, 90°, and 120°. Results: Reconstruction of ACLs with both low and high posterior tibial loading resulted in significant increases of peak contact pressure in the medial (range of differences, 0.46-0.92 MPa; P < .05) and lateral (range of differences, 0.51-0.83 MPa; P < .05) PFJ compared with the ACL-intact condition. However, no significant differences in PFJ kinematics were identified between ACL-reconstructed knees and ACL-intact knees. In ACL-reconstructed knees, it was found that a high posterior tibial loading resulted in high peak contact pressure on the medial patellar side (range of differences, 0.37-0.46 MPa; P < .05). No significant difference in peak contact pressure was observed among the differing graft tensions. Conclusion: In this cadaveric model, ACL reconstruction resulted in significant increases of peak contact pressure in the PFJ facet when compared with the ACL-intact condition. A high posterior tibial loading can lead to high medial PFJ peak contact pressure. Graft tension was found to not significantly affect PFJ contact pressure during ACL reconstruction. Clinical Relevance: An excessive posterior tibial loading during ACL reconstruction resulted in increased PFJ contact pressures at time of surgery. These data suggest that a low posterior tibial loading might be preferred during ACL reconstruction surgery to reduce the PFJ contact pressure close to that of the ACL-intact condition.


Author(s):  
Miho J. Tanaka ◽  
Andrew J. Cosgarea ◽  
Jared M. Forman ◽  
John J. Elias

AbstractMedial patellofemoral ligament (MPFL) reconstruction is currently the primary surgical procedure for treating recurrent lateral patellar instability. The understanding of graft function has largely been based on studies performed with normal knees. The current study was performed to characterize graft function following MPFL reconstruction, focusing on the influence of pathologic anatomy on graft tension, variations with knee flexion, and the influence on patellar tracking. Knee squatting was simulated with 15 multibody dynamic simulation models representing knees being treated for recurrent lateral patellar instability. Squatting was simulated in a preoperative condition and following MPFL reconstruction with a hamstrings tendon graft set to allow 0.5 quadrants of lateral patellar translation with the knee at 30 degrees of flexion. Linear regressions were performed to relate maximum tension in the graft to parameters of knee anatomy. Repeated measures comparisons evaluated variations in patellar tracking at 5-degree increments of knee flexion. Maximum graft tension was significantly correlated with a parameter characterizing lateral position of the tibial tuberosity (maximum lateral tibial tuberosity to posterior cruciate ligament attachment distance, r 2 = 0.73, p < 0.001). No significant correlations were identified for parameters related to trochlear dysplasia (lateral trochlear inclination) or patella alta (Caton–Deschamps index and patellotrochlear index). Graft tension peaked at low flexion angles and was minimal by 30 degrees of flexion. MPFL reconstruction decreased lateral patellar shift (bisect offset index) compared with preoperative tracking at all flexion angles from 0 to 50 degrees of flexion, except 45 degrees. At 0 degrees, the average bisect offset index decreased from 0.81 for the preoperative condition to 0.71. The results indicate that tension within an MPFL graft increases with the lateral position of the tibial tuberosity. The graft tension peaks at low flexion angles and decreases lateral patellar maltracking. The factors that influence graft function following MPFL reconstruction need to be understood to limit patellar maltracking without overloading the graft or over constraining the patella.


2020 ◽  
Vol 48 (4) ◽  
pp. 916-922
Author(s):  
Yuzuru Sakakibara ◽  
Atsushi Teramoto ◽  
Tetsuya Takagi ◽  
Satoshi Yamakawa ◽  
Hiroaki Shoji ◽  
...  

Background: Although a variety of surgical procedures for anterior talofibular ligament (ATFL) reconstruction have been reported, the effect of initial graft tension during ATFL reconstruction remains unclear. Purpose/Hypothesis: This study investigated the effects of initial graft tension on ATFL reconstruction. We hypothesized that a high degree of initial graft tension would cause abnormal kinematics and laxity. Study Design: Controlled laboratory study. Methods: Twelve cadaveric ankles were tested with a robotic system with 6 degrees of freedom to apply passive plantarflexion and dorsiflexion motions and a multidirectional load. A repeated measures experiment was designed with the intact ATFL, transected ATFL, and reconstructed ATFL at initial tension conditions of 10, 30, 50, and 70 N. The 3-dimensional path and reconstructed graft tension were simultaneously recorded, and the in situ forces of the ATFL and reconstructed graft were calculated with the principle of superposition. Results: Initial tension of 10 N was sufficient to imitate normal ankle kinematics and laxity, which were not significantly different when compared with those of the intact ankles. The in situ force on the reconstructed graft tended to increase as the initial tension increased. In situ force on the reconstructed graft >30 N was significantly greater than that of intact ankles. The in situ force on the ATFL was 19 N at 30° of plantarflexion. In situ forces of 21.9, 30.4, 38.2, and 46.8 N were observed at initial tensions of 10, 30, 50, and 70 N, respectively, at 30° of plantarflexion. Conclusion: Approximate ankle kinematic patterns and sufficient laxity, even with an initial tension of 10 N, could be obtained immediately after ATFL reconstruction. Moreover, excessive initial graft tension during ATFL reconstruction caused excessive in situ force on the reconstructed graft. Clinical Relevance: This study revealed the effects of initial graft tension during ATFL reconstruction. These data suggest that excessive tension during ATFL reconstruction should be avoided to ensure restoration of normal ankle motion.


Author(s):  
Steven F. DeFroda ◽  
Naga Padmini Karamchedu ◽  
Ross Budacki ◽  
Taylor Wiley ◽  
Paul D. Fadale ◽  
...  

AbstractThis article investigates the clinical, functional, and radiographic outcomes in anterior cruciate ligament (ACL) reconstruction patients over 7 years to determine the effects of initial graft tension on outcomes when using patellar tendon (bone–tendon–bone [BTB]) and hamstring tendon (HS) autografts. Ninety patients, reconstructed with BTB or HS, were randomized using two initial graft tension protocols: (1) normal anteroposterior (AP) laxity (“low-tension”; n = 46) and (2) AP laxity overconstrained by 2 mm (“high-tension”; n = 44). Seventy-two patients had data available at 7 years, with 9 excluded for graft failure. Outcomes included the Knee Injury and Osteoarthritis Outcome Score, Short-Form-36 (SF-36), and Tegner activity scale. Clinical outcomes included KT-1000S and International Knee Documentation Committee examination score; and functional outcomes included 1-leg hop distance and peak knee extensor torque. Imaging outcomes included medial joint space width, Osteoarthritis Research Society International radiographic score, and Whole-Organ Magnetic Resonance Score. There were significantly improved outcomes in the high-tension compared with the low-tension HS group for SF-36 subset scores for bodily pain (p = 0.012), social functioning (p = 0.004), and mental health (p = 0.014) 84 months postsurgery. No significant differences in any outcome were found within the BTB groups. Tegner activity scores were also significantly higher for the high-tension HS group compared with the low-tension (6.0 vs. 3.8, p = 0.016). Patients with HS autografts placed in high tension had better outcomes relative to low tension for Tegner activity score and SF-36 subset scores for bodily pain, social functioning, and mental health. For this reason, we recommend that graft fixation be performed with the knee at 30-degree flexion (“high-tension” condition) when reconstructing the ACL with HS autograft.


2019 ◽  
Vol 5 (1) ◽  
pp. 505-507
Author(s):  
Mira Dreier ◽  
Samuel Bachmayer ◽  
Christian Baumgartner ◽  
Jörg Schröttner

AbstractAlong with increasing enthusiasm for sports comes an increase of sport related injuries. One of the most common injuries in the human knee is the tear of the anterior cruciate ligament (ACL). The selection of a graft fixation device is an important factor that determines the outcome of an anterior cruciate ligament reconstruction. Before the healing process is completed, the graft is dependent on tibial and femoral fixation devices to maintain normal ACL graft tension. Among various devices, the use of an adjustable loop suspensory fixation device (ALD) in soft-tissue graft reconstruction attracts current interest. An advantage of the ALD is the ability to draw the graft to the depth of the bone tunnel to achieve adequate graft tension while minimizing the empty space in the tunnel. In this study a comprehensive controlled laboratory investigation is performed to examine the biomechanical properties of commonly used cortical fixation devices, with the aim of implementing a standard testing procedure for adjustable loop devices. The procedure consists of three test series, a loop shortening test and two different stability test series (singe device and tendon device test). Those test series are used to compare the performance of a new ALD from Arthrex (Naples, USA) with five competitor devices already on the market. In order to obtain representative results eight samples of each device are tested. In comparison to the previously performed studies, a complete unloading is applied in the stability tests, which allows for a detailed examination of the ALDs locking mechanisms in dynamically loaded test situations. Furthermore, the performed loop shortening tests reveal important aspects, such as the shortening accuracy and settling effects of the loops, that are not found in previous studies. Therefore, the used test protocol can be recommended for further testing.


Sign in / Sign up

Export Citation Format

Share Document