Stresses in a Stretched Slab Having a Spherical Cavity
Abstract This paper presents an analytic solution for an infinite slab having a symmetrically located spherical cavity when it is stretched by an all-round tension. The required stress function is constructed by combining linearly two sets of periodic biharmonic functions and a biharmonic integral. The sets of biharmonic functions are derived from two fundamental functions specially built up for the purpose. The arbitrary functions involved in the biharmonic integral are first adjusted to satisfy the boundary conditions on the surfaces of the slab by applying the Hankel transform of zero order. Then the stress function is expanded in spherical co-ordinates and the boundary conditions on the surface of the cavity are satisfied by adjusting the coefficients of superposition attached to the sets of biharmonic functions. The resulting system of linear equations is solved by the method of successive approximations. The solution is finally illustrated by numerical examples for two radii of the cavity.