Model-Based Condition Monitoring of an Electro-Hydraulic Valve

Author(s):  
Andreas Steinboeck ◽  
Wolfgang Kemmetmüller ◽  
Christoph Lassl ◽  
Andreas Kugi

In many hydraulic systems, it is difficult for human operators to detect faults or to monitor the condition of valves. Based on dynamical models of an electro-hydraulic servo valve and a hydraulic positioning unit, we develop a parametric fault detection and condition monitoring system for the valve. Our approach exploits the nexus between the spool position, the geometric orifice area, the flow conditions at wearing control edges, and the velocity of the controlled cylinder. The effective orifice area of each control edge is estimated based on measurement data and described by aggregate wear parameters. Their development is monitored during the service life of the valve, which allows consistent tracking of the condition of the valve. The method is suitable for permanent in situ condition monitoring. Flow measurements are not required. Computer simulations and measurement results from an industrial plant demonstrate the feasibility of the method.

2020 ◽  
Vol 87 (3) ◽  
pp. 189-200
Author(s):  
Thomas Voglhuber-Brunnmaier ◽  
Alexander O. Niedermayer ◽  
Friedrich Feichtinger ◽  
Erwin K. Reichel ◽  
Bernhard Jakoby

AbstractAn online condition monitoring system based on the measurement of viscosity and density of liquids is presented and applied to three different measuring tasks relevant for industrial and automotive applications. One topic is oil characterization in hydraulic systems. It is shown that by measuring over varying temperature and pressure, additional physical properties can be made available for online condition monitoring, which are difficult to measure otherwise. These include, for example, the coefficient of thermal expansion and the bulk modulus, which is also related to the proportion of dissolved air. In the second application we investigate the efficiency of a passive oil defoamer and estimate the percentage of free air. Finally, the suitability of the measurement system for the determination of the diesel fraction in the engine oil as caused by the regeneration cycles of the diesel particulate filter is demonstrated.


Author(s):  
Meri L. Andreassen ◽  
Bonnie E. Smith ◽  
Thomas W. Guyette

Pressure-flow data are often used to provide information about the adequacy of velopharyngeal valving for speech. However, there is limited information available concerning simultaneous pressure-flow measurements for oral and nasal sound segments produced by normal speakers. This study provides normative pressure, flow, and velopharyngeal orifice area measurements for selected oral and nasal sound segments produced by 10 male and 10 female adult speakers. An aerodynamic categorization scheme of velopharyngeal function, including one typical category and three atypical categories (open, closed, and mixed) is proposed.


Author(s):  
Ting-Chi Yeh ◽  
Min-Chun Pan

When rotary machines are running, acousto-mechanical signals acquired from the machines are able to reveal their operation status and machine conditions. Mechanical systems under periodic loading due to rotary operation usually respond in measurements with a superposition of sinusoids whose frequencies are integer (or fractional integer) multiples of the reference shaft speed. In this study we built an online real-time machine condition monitoring system based on the adaptive angular-velocity Vold-Kalman filtering order tracking (AV2KF_OT) algorithm, which was implemented through a DSP chip module and a user interface coded by the LabVIEW®. This paper briefly introduces the theoretical derivation and numerical implementation of computation scheme. Experimental works justify the effectiveness of applying the developed online real-time condition monitoring system. They are the detection of startup on the fluid-induced instability, whirl, performed by using a journal-bearing rotor test rig.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 304
Author(s):  
Sakthivel Ganesan ◽  
Prince Winston David ◽  
Praveen Kumar Balachandran ◽  
Devakirubakaran Samithas

Since most of our industries use induction motors, it is essential to develop condition monitoring systems. Nowadays, industries have power quality issues such as sag, swell, harmonics, and transients. Thus, a condition monitoring system should have the ability to detect various faults, even in the presence of power quality issues. Most of the fault diagnosis and condition monitoring methods proposed earlier misidentified the faults and caused the condition monitoring system to fail because of misclassification due to power quality. The proposed method uses power quality data along with starting current data to identify the broken rotor bar and bearing fault in induction motors. The discrete wavelet transform (DWT) is used to decompose the current waveform, and then different features such as mean, standard deviation, entropy, and norm are calculated. The neural network (NN) classifier is used for classifying the faults and for analyzing the classification accuracy for various cases. The classification accuracy is 96.7% while considering power quality issues, whereas in a typical case, it is 93.3%. The proposed methodology is suitable for hardware implementation, which merges mean, standard deviation, entropy, and norm with the consideration of power quality issues, and the trained NN proves stable in the detection of the rotor and bearing faults.


2021 ◽  
Vol 10 (3) ◽  
pp. 431
Author(s):  
Danuta Sorysz ◽  
Rafał Januszek ◽  
Anna Sowa-Staszczak ◽  
Anna Grochowska ◽  
Marta Opalińska ◽  
...  

Transcatheter aortic valve implantation (TAVI) is now a well-established treatment for severe aortic stenosis. As the number of procedures and indications increase, the age of patients decreases. However, their durability and factors accelerating the process of degeneration are not well-known. The aim of the study was to verify the possibility of using [18F]F-sodium fluoride ([18F]F-NaF) and [18F]F-fluorodeoxyglucose ([18F]F-FDG) positron emission tomography/computed tomography (PET/CT) in assessing the intensity of TAVI valve degenerative processes. In 73 TAVI patients, transthoracic echocardiography (TTE) at initial (before TAVI), baseline (after TAVI), and during follow-up, as well as transesophageal echocardiography (TEE) and PET/CT, were performed using [18F]F-NaF and [18F]F-FDG at the six-month follow-up (FU) visit as a part of a two-year FU period. The morphology of TAVI valve leaflets were assessed in TEE, transvalvular gradients and effective orifice area (EOA) in TTE. Calcium scores and PET tracer activity were counted. We assessed the relationship between [18F]F-NaF and [18F]F-FDG PET/CT uptake at the 6 = month FU with selected indices e.g.,: transvalvular gradient, valve type, EOA and insufficiency grade at following time points after the TAVI procedure. We present the preliminary PET/CT ([18F]F-NaF, [18F]F-FDG) results at the six-month follow-up period as are part of an ongoing study, which will last two years FU. We enrolled 73 TAVI patients with the mean age of 82.49 ± 7.11 years. A significant decrease in transvalvular gradient and increase of effective orifice area and left ventricle ejection fraction were observed. At six months, FU valve thrombosis was diagnosed in four patients, while 7.6% of patients refused planned controls due to the COVID-19 pandemic. We noticed significant correlations between valve types, EOA and transaortic valve gradients, as well as [18F]F-NaF and [18F]F-FDG uptake in PET/CT. PET/CT imaging with the use of [18F]F-FDG and [18F]F-NaF is intended to be feasible, and it practically allows the standardized uptake value (SUV) to differentiate the area containing the TAVI leaflets from the SUV directly adjacent to the ring calcifications and the calcified native leaflets. This could become the seed for future detection and evaluation capabilities regarding the progression of even early degenerative lesions to the TAVI valve, expressed as local leaflet inflammation and microcalcifications.


Sign in / Sign up

Export Citation Format

Share Document