Dynamic Modeling of a Solar Reactor for Zinc Oxide Thermal Dissociation and Experimental Validation Using IR Thermography

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
W. Villasmil ◽  
A. Meier ◽  
A. Steinfeld

A dynamic numerical model of a solar cavity-type reactor for the thermal dissociation of ZnO is formulated based on a detailed radiative heat transfer analysis combining the Monte Carlo ray-tracing technique and the radiosity enclosure theory. The quartz window is treated as a semitransparent glass layer with spectrally and directionally dependent optical properties. Model validation is accomplished by comparison with experimental results obtained with a 10-kW solar reactor prototype in terms of cavity temperatures, reaction extents, and quartz window temperature distribution measured by IR thermography. The solar-to-fuel energy conversion efficiencies obtained experimentally are reported, and the various energy flows are quantified.

Author(s):  
W. Villasmil ◽  
A. Meier ◽  
A. Steinfeld

A dynamic numerical model of a solar cavity-type reactor for the thermal dissociation of ZnO is formulated based on a detailed radiative heat transfer analysis combining the Monte Carlo ray-tracing technique and the radiosity enclosure theory. The quartz window is treated as a semi-transparent spectrally-selective glass layer with directionally dependent optical properties. Model validation is accomplished by comparison with experimental results obtained with a 10-kW solar reactor prototype in terms of cavity temperatures, reaction extents, and quartz window temperature distribution measured by IR thermography. The solar-to-fuel energy conversion efficiencies obtained experimentally are reported and the various energy flows are quantified.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 195-202 ◽  
Author(s):  
Muhammad Qasim ◽  
Tasawar Hayat ◽  
Saleem Obaidat

This study concentrates on the heat transfer analysis of the steady flow of viscoelastic fluid along an inclined stretching surface. Analysis has been carried out in the presence of thermal radiation and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The equations of continuity, momentum and energy are reduced into the system of governing differential equations and solved by homotopy analysis method (HAM). The velocity and temperature are illustrated through graphs. Exact and homotopy solutions are compared in a limiting sense. It is noticed that viscoelastic parameter decreases the velocity and boundary layer thickness. It is also observed that increasing values of viscoelastic parameter reduces the thickness of momentum boundary layer and increase the heat transfer rate. However, it is found that increasing the radiation parameter has the effect of decreasing the local Nusselt number


2005 ◽  
Vol 127 (3) ◽  
pp. 425-429 ◽  
Author(s):  
C. Wieckert

A high-temperature solar chemical reactor for the processing of solids is scaled up from a laboratory scale (5kW concentrated solar power input) to a pilot scale (200kW). The chosen design features two cavities in series: An upper cavity has a small aperture to let in concentrated solar power coming from the top. It serves as the solar receiver, radiant absorber, and radiant emitter to a lower cavity. The lower cavity is a well-insulated enclosure. It is subjected to thermal radiation from the upper cavity and serves in our application as the reaction chamber for a mixture of ZnO and carbon. Important insight for the definition of the geometrical parameters of the pilot reactor has been generated by a radiation heat transfer analysis based on the radiosity enclosure theory. The steady-state model accounts for radiation heat transfer within the solar reactor including reradiation losses through the reactor aperture, wall losses due to thermal conduction and heat consumption by the endothermic chemical reaction. Key results include temperatures of the different reactor walls and the thermal efficiency of the reactor as a function of the major geometrical and physical parameters. The model, hence, allows for a fast estimate of the influence of these parameters on the reactor performance.


1986 ◽  
Vol 21 (5) ◽  
pp. 311-316
Author(s):  
Hiroshi Hayasaka ◽  
Kazuhiko Kudo ◽  
Hiroshi Taniguchi ◽  
Noboru Okigami ◽  
Taketoshi Takahashi ◽  
...  

Author(s):  
M. H. Saidi ◽  
M. Kargar ◽  
A. Ghafourian

Investigation of radiation heat transfer In vortex engine is an important and new phenomenon in combustion for scientists and combustion researchers. In this research some parts of the combustion chamber wall are insulated using Blanket as a high insulating material. The rate of radiative heat transfer to the chamber wall is calculated using temperature difference between inner and outer surface of chamber. In the experiments this parts are protected from direct contact with hot combustion media using quartz window. The luminous radiative transfer per volume of chamber and also volume of flame in a vortex engine are compared with that in a similar axial flow type engine. A detector sensitive to emission from C2* excited radically is utilized for the measurement of chemiluminescence emission at the centerline of chamber along all axial positions. The filtered photographs of flame are used to compare total C2* emission from flame.


Sign in / Sign up

Export Citation Format

Share Document