energy flows
Recently Published Documents


TOTAL DOCUMENTS

861
(FIVE YEARS 305)

H-INDEX

34
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Chunming Huang ◽  
Lingyun Yang ◽  
Shaodong Zhang ◽  
Kaiming Huang ◽  
Yun Gong ◽  
...  

Abstract Although the characteristics of the traveling 10-day waves (10DWs) above the middle stratosphere have been well explored, little research has been performed on the counterpart in the troposphere and lower stratosphere (TLS). In the present study, we use radiosonde observations and MERRA-2 data in 2020 to characterize traveling 10DWs in mid-latitudes in the TLS. Single-site observations in both hemispheres show that strong 10DW activities are always accompanied by strong eastward jets (10-13 km). MERRA-2 data indicates that in the troposphere the eastward-propagating modes with larger wavenumbers, i.e., E3, E4, E5 and E6 are dominant. While in the lower stratosphere the eastward- and westward-propagating modes with small zonal wavenumbers e.g., 1 and 2, are dominant. Further research on E3, E4, E5 and E6 modes in the troposphere of both hemispheres shows that all the wave activities are positively correlated to the background zonal wind. The refractive index squared reveal that a strong eastward jet is suitable for these four modes to propagate. However, just above the jet, the eastward wind decreases with altitude, and a thick evanescence region emerges above 15 km. E3, E4, E5 and E6 10DWs cannot propagate upward across the tropopause; as such this can explain why these four modes are weak or even indiscernible in the stratosphere and above. In the troposphere, E5 10DW at 32°S is the most dominant mode in 2020. A case study of the anomalously strong E5 10DW activity on May 12, 2020 indicates that the wave amplification resulted from the upward and equatorward transmission of wave energy flows. Moreover, the tropopause and equatorial region can prevent the propagations of wave energy flows of E5 10DW.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 539
Author(s):  
Valeri Mladenov ◽  
Vesselin Chobanov ◽  
George Calin Seritan ◽  
Radu Florin Porumb ◽  
Bogdan-Adrian Enache ◽  
...  

The paper’s main objective is to demonstrate the trading and flexibility of services amongst TSOs, DSOs, and Prosumers in a transparent, secure, and cost-effective manner using Blockchain-based TSO-DSO flexibility marketplace (EFLEX). The aim is to look for ways to help DSOs/TSOs be more flexible and more directly engaged in managing energy flows on the network. EFLEX will streamline the needs of both TSO and DSO on the same platform. Based on the paper’s proposed services, the pilot service demonstration will be carried out in Bulgaria and Romania, and the main focus will be on congestion management, TSO-DSO Coordination, and Marketplace. The proposed objective is achieved by using Blockchain-based smart contracts and distributed ledger technology.


2022 ◽  
Vol 14 (1) ◽  
pp. 1-4
Author(s):  
Mayya Gogina ◽  
Anja Zettler ◽  
Michael L. Zettler

Abstract. The availability of standardised biomass data is essential for studying population dynamics, energy flows, fisheries and food web interactions. To make the estimates of biomass consistent, weight-to-weight conversion factors are often used, for example to translate more widely available measurements of wet weights into required dry weights and ash-free dry weight metrics. However, for many species and groups the widely applicable freely available conversion factors have until now remained very rough approximations with high degree of taxonomic generalisation. To close up this gap, here for the first time we publish the most detailed and statically robust list of ratios of wet weight (WW), dry weight (DW) and ash-free dry weight (AFDW). The dataset includes over 17 000 records of single measurements for 497 taxa. Along with aggregated calculations, enclosed reference information with sampling dates and geographical coordinates the dataset provides a broad opportunity for reuse and repurposing. It empowers the future user to do targeted sub-selections of data to best combine them with their own local data, instead of only having a single value of conversion factor per region. The dataset can thereby be used to quantify natural variability and uncertainty. The dataset is available via an unrestricted repository from https://doi.org/10.12754/data-2021-0002-01 (Gogina et al., 2021).


Author(s):  
Ipsita Saha ◽  
Tatiana S. Smirnova ◽  
Vladimir A. Maryev

In recent years, waste management has become a major concern in Russian cities. This can be addressed through the circular economy. Developing Eco-Industrial Parks (EIP) can be considered an innovative infrastructure of a circular economy. EIP is based upon the principles of industrial symbiosis involving the exchange of material and energy flows, sharing of infrastructural facilities, and provision of municipal utility and other services. Researchers have found that most industrial symbiotic interconnections originated spontaneously, the main driver being the increasing commercial benefits of such interchange. Still, the authors were able to identify pre-designed EIP through their examination of global practices. This paper proposes a five-stage methodological approach to EIP organization. This methodology was applied to create a model of an EIP in the Voronezh Region, one of the fastest developing regions in Russia. Implementation of this model is intended to help solve a set of environmental, economic, and social problems of a region. The approach to creating EIPs described in this study can be used in other places to improve resource efficiency and reduce waste disposal. Because Russia’s garbage disposal rate currently exceeds 90% per year, this is one of the country’s top sustainable development priorities.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8382
Author(s):  
Alberto-Jesus Perea-Moreno ◽  
Quetzalcoatl Hernandez-Escobedo

According to United Nations data, half of the world’s population lives in cities and forecasts indicate that by the middle of the 21st century, this percentage will have increased to 65%. The increase in the urban population favors the creation of a network of interactions that entails a series of material and energy flows. These cause environmental impacts that affect the quality of life of citizens and the environment as a whole. According to data from the International Energy Agency, cities occupy 3% of the planet’s surface and are responsible for 67% of global energy consumption. The effects caused by this consumption, as well as its impact on the depletion of resources, make it necessary to carry out an exhaustive study of renewable energies and new energy saving systems. This Special Issue aims to present new advances and developments in renewable energy and energy saving systems that allow cities to evolve in a sustainable way.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 637
Author(s):  
Marcin Brzezicki ◽  
Paweł Regucki ◽  
Jacek Kasperski

A building’s facade is its main interface with the external environment, as it controls almost all energy flows in the building—losses and gains. In this context, the most recent invention of adaptive façades allows for the introduction of an optimized system for both daylight management and electrical energy production. The authors of the presented paper propose a novel adaptive façade system that is equipped with vertical shading fins of 1 × 4 m that are covered with PV panels. The fins are kinetic and rotate around a vertical axis in order to optimize solar irradiation for producing electricity. The presented adaptive façade is analyzed in two stages. Firstly, the number of vertical shading fins is optimized in the context of useful daylight illuminance (UDI) and daylight glare probability (DGP) using Radiance-cored software. Next, two scenarios of PV installation are verified for fixed and the Sun-tracking solution. The results show that the Sun-tracking system is more efficient than the fixed one, but electricity production is only increased by 3.21%. The reason for this is the fact that—while following the Sun’s azimuth position—fins shade each other and reduce the effective area of the adjacent PV panels. Based on this, the authors conclude that the Sun-tracking system might be justified due to its protective or decorative function and not because of its improved effectiveness in generating electrical energy.


Author(s):  
V. D. Petrash ◽  
V. O. Makarov ◽  
A. A. Khomenko

The results of the analytical study substantiated the operating conditions for the highly efficient use of the temperature potential of seawater in heat pump heating systems (HPHS) for buildings a building with correspondingly improved environmental indicators. Based on the analysis of the regional conditions of the Odessa water area of the Black Sea, the initial parameters have been substantiated and rational modes of operation of an improved HPHS with central, decentralized or local heating of the subscriber energy carrier have been determined. As indicators for evaluating the efficiency of the HPHS operation, the conversion factor of energy flows and the specific consumption of external energy for the drive of the compressor and the circulating pump of cooled water in the operation of heat pump units were considered. For seawater in the Odessa water area of the Black Sea during the entire heating period, the following temperatures were considered as initial data for analysis: water at the inlet to the evaporator (5–10) ° C, at the outlet (1 °C); calculated temperature difference of the coolant in the heating system (50–40) °C, indoor air (20 °C); estimated outdoor temperature (–18 °C). The characteristic correspondence between the flow rates of the cooled sea water and the heated energy carrier of the heat supply system was taken into account. The prerequisites of high efficiency of the heat pump heat supply system in which the actual conversion coefficient exceeds the seasonal normalized calculated and minimum value at an outdoor temperature of (–10) °C under the limiting conditions of the monoenergy regime for both new and reconstructed buildings were substantiated. In the course of the study, it has been determined that the total specific consumption of external energy for the compressor drive and the circulation of cooled water in the operation of a heat pump unit with a characteristic ratio of water equivalents, even under the limiting conditions of the monoenergetic mode of operation of the heat supply system at an outdoor temperature of (–10) °C, are within the range of generally accepted values (w = 0.28–0.34).


Sign in / Sign up

Export Citation Format

Share Document